Nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging genome or polyelectrolyte

被引:52
|
作者
Chevreui, Maelenn [1 ,2 ]
Law-Hine, Didier [1 ]
Chen, Jingzhi [1 ]
Bressanelli, Stephane [2 ]
Combet, Sophie [3 ]
Constantin, Doru [1 ]
Degrouard, Jeril [1 ]
Moller, Johannes [4 ]
Zeghal, Mehdi [1 ]
Tresset, Guillaume [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, Lab Phys Solides, CNRS, F-91405 Orsay, France
[2] Univ Paris Saclay, Univ Paris Sud, I2BC, CNRS,CEA, F-91198 Gif Sur Yvette, France
[3] Univ Paris Saclay, LLB, CEA Saclay, UMR CEA CNRS 12, F-91191 Gif Sur Yvette, France
[4] ESRF, 71 Ave Martyrs, F-38000 Grenoble, France
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
VIRUS-LIKE PARTICLES; CRYOELECTRON MICROSCOPY; PLANT-VIRUS; PROTEIN; RNA; PATHWAY; NANOPARTICLES; RECONSTRUCTION; TEMPLATES; MECHANISM;
D O I
10.1038/s41467-018-05426-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The survival of viruses partly relies on their ability to self-assemble inside host cells. Although coarse-grained simulations have identified different pathways leading to assembled virions from their components, experimental evidence is severely lacking. Here, we use timeresolved small-angle X-ray scattering to uncover the nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging their full RNA genome. We reveal the formation of amorphous complexes via an en masse pathway and their relaxation into virions via a synchronous pathway. The binding energy of capsid subunits on the genome is moderate (similar to 7k(B)T(o), with k(B) the Boltzmann constant and T-o = 298 K, the room temperature), while the energy barrier separating the complexes and the virions is high (similar to 20k(B)T(o)). A synthetic polyelectrolyte can lower this barrier so that filled capsids are formed in conditions where virions cannot build up. We propose a representation of the dynamics on a free energy landscape.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Phase field method for nonequilibrium dynamics of reversible self-assembly systems
    Freed, Karl F.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (13):
  • [22] Self-Assembly at a Nonequilibrium Critical Point
    Whitelam, Stephen
    Hedges, Lester O.
    Schmit, Jeremy D.
    PHYSICAL REVIEW LETTERS, 2014, 112 (15)
  • [23] Design principles for nonequilibrium self-assembly
    Nguyen, Michael
    Vaikuntanathan, Suriyanarayanan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (50) : 14231 - 14236
  • [24] LITTLE ARCHAEOLOGICAL CHRONICLE - ICOSAHEDRAL SELF-ASSEMBLY
    LASZLO, P
    NOUVEAU JOURNAL DE CHIMIE-NEW JOURNAL OF CHEMISTRY, 1983, 7 (03): : 145 - 146
  • [25] Impact of surface charge density and motor force upon polyelectrolyte packaging in viral capsids
    Cao, Qianqian
    Bachmann, Michael
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2016, 54 (11) : 1054 - 1065
  • [26] Self-Assembly of Epstein-Barr Virus Capsids
    Henson, Brandon W.
    Perkins, Edward M.
    Cothran, Jonathan E.
    Desai, Prashant
    JOURNAL OF VIROLOGY, 2009, 83 (08) : 3877 - 3890
  • [27] Self-assembly of viral particles
    Rong, Jianhua
    Niu, Zhongwei
    Lee, L. Andrew
    Wang, Qian
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2011, 16 (06) : 441 - 450
  • [28] Role of DNA-DNA sliding friction and nonequilibrium dynamics in viral genome ejection and packaging
    Fizari, Mounir
    Keller, Nicholas
    Jardine, Paul J.
    Smith, Douglas E.
    NUCLEIC ACIDS RESEARCH, 2023, 51 (15) : 8060 - 8069
  • [29] Slow dynamics in transient polyelectrolyte hydrogels formed by self-assembly of block copolymers
    Charbonneau, Celine
    Chassenieux, Christophe
    Colombani, Olivier
    Nicolai, Taco
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [30] Vacuum Packaging of MEMS by Self-Assembly
    Naveh, Royi
    Zussman, Eyal
    JOURNAL OF ELECTRONIC PACKAGING, 2012, 134 (02)