EXPONENTIAL STABILITY FOR NONAUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY

被引:4
|
作者
Maroto, Ismael [1 ]
Nunez, Carmen [1 ]
Obaya, Rafael [1 ]
机构
[1] Univ Valladolid, Dept Matemat Aplicada, Paseo Cauce 59, E-47011 Valladolid, Spain
来源
基金
欧盟地平线“2020”;
关键词
Nonautonomous FDEs; state-dependent delay; exponential stability; upper Lyapunov exponent; 2ND-ORDER DIFFERENTIABILITY; PERIODIC-SOLUTIONS; BANACH-SPACES; RESPECT; PARAMETERS;
D O I
10.3934/dcdsb.2017169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The properties of stability of a compact set K which is positively invariant for a semiflow (Omega x W-1,W-infinity ([-r, 0], R-n), Pi, R+) determined by a family of nonautonomous FDEs with state-dependent delay taking values in [0, r] are analyzed. The solutions of the variational equation through the orbits of K induce linear skew-product semiflows on the bundles K x W-1,W-infinity ([-r, 0]; R-n) and K x C ([-r, 0], R-n). The coincidence of the upper-Lyapunov exponents for both semiflows is checked, and it is a fundamental tool to prove that the strictly negative character of this upper-Lyapunov exponent is equivalent to the exponential stability of K in Omega x W-1,W-infinity ([-r, 0]; R-n) and also to the exponential stability of this compact set when the supremum norm is taken in W-1,W-infinity ([-r, 0]; R-n). In particular, the existence of a uniformly exponentially stable solution of a uniformly almost periodic FDE ensures the existence of exponentially stable almost periodic solutions.
引用
收藏
页码:3167 / 3197
页数:31
相关论文
共 50 条
  • [31] Mild solutions for impulsive neutral functional differential equations with state-dependent delay
    Cuevas, Claudio
    N'Guerekata, Gaston M.
    Rabelo, Marcos
    SEMIGROUP FORUM, 2010, 80 (03) : 375 - 390
  • [32] An efficient IMEX method for nonlinear functional differential equations with state-dependent delay
    Wang, Wansheng
    Chen, Qiong
    Mao, Mengli
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 56 - 71
  • [33] Fractional order partial hyperbolic functional differential equations with state-dependent delay
    Abbas, Saied
    Benchohra, Mouffak
    Zhou, Yong
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2011, 3 (04) : 459 - 490
  • [34] Global Existence Results for Neutral Functional Differential Equations with State-Dependent Delay
    Benchohra M.
    Medjadj I.
    Differential Equations and Dynamical Systems, 2016, 24 (2) : 189 - 200
  • [35] GLOBAL HOPF BIFURCATIONS OF NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY
    Sun, Xiuli
    Yuan, Rong
    Lv, Yunfei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (02): : 667 - 700
  • [36] Existence results for partial neutral functional differential equations with state-dependent delay
    Morales, Eduardo Hernandez
    McKibben, Mark A.
    Henriquez, Hernan R.
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (5-6) : 1260 - 1267
  • [37] On state-dependent delay partial neutral functional integro-differential equations
    dos Santos, Jose P. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (05) : 1637 - 1644
  • [38] Mild solutions for impulsive neutral functional differential equations with state-dependent delay
    Claudio Cuevas
    Gaston M. N’Guérékata
    Marcos Rabelo
    Semigroup Forum, 2010, 80 : 375 - 390
  • [39] Wellposedness of abstract differential equations with state-dependent delay
    Hernandez, Eduardo
    Azevedo, Katia A. G.
    Rolnik, Vanessa
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (13) : 2045 - 2056
  • [40] Periodic Orbits of State-Dependent Delay Differential Equations
    Corbett, Noah
    Naudot, Vincent
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (01):