Landslide and Wildfire Susceptibility Assessment in Southeast Asia Using Ensemble Machine Learning Methods

被引:48
|
作者
He, Qian [1 ,2 ]
Jiang, Ziyu [1 ,2 ]
Wang, Ming [1 ,2 ]
Liu, Kai [1 ,2 ]
机构
[1] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Acad Disaster Reduct & Emergency Management, Fac Geog Sci, Beijing 100875, Peoples R China
关键词
Southeast Asia; landslide; wildfire; susceptibility; ensemble machine learning; COMPUTATIONAL INTELLIGENCE MODELS; FLOOD SUSCEPTIBILITY; LOGISTIC-REGRESSION; NEURAL-NETWORK; DECISION TREE; FOREST; PREDICTION; INDONESIA; REGION; CLASSIFICATION;
D O I
10.3390/rs13081572
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Southeast Asia (SEA) is a region affected by landslide and wildfire; however, few studies on susceptibility modeling for the two hazards together have been conducted for this region, and the intersection and the uncertainty of the two hazards are rarely assessed. Thus, the intersection of landslide and wildfire susceptibility and the spatial uncertainty of the susceptibility maps were studied in this paper. Reliable landslide and wildfire susceptibility maps are necessary for disaster management and land use planning. This work used three advanced ensemble machine learning algorithms: RF (Random Forest), GBDT (Gradient Boosting Decision Tree) and AdaBoost (Adaptive Boosting) to assess the landslide and wildfire susceptibility for SEA. A geo-database was established with 2759 landslide locations, 1633 wildfire locations and 18 predictor variables in total. The performances of the models were assessed using the overall classification accuracy (ACC), Precision, the area under the ROC (receiver operating curve) (AUC) and confusion matrix values. The results showed RF performs superior in both landslide (ACC = 0.81, Precision = 0.78 and AUC= 0.89) and wildfire (ACC= 0.83, Precision = 0.83 and AUC = 0.91) susceptibility modeling, followed by GBDT and AdaBoost. The overall superiority of RF over other models indicates that it is potentially an efficient model for landslide and wildfire susceptibility mapping. The landslide and wildfire susceptibility were obtained using the RF model. This paper also conducted an overlay analysis of the two hazards. The uncertainty of the susceptibility was further assessed using the coefficient of variation (CV). Additionally, the distance to roads is relatively important in both landslide and wildfire susceptibility, which is the most important in landslides and the second most important in wildfires. The result of this paper is useful for mastering the whole situation of hazard susceptibility and proves that RF is a robust model in the hazard susceptibility assessment in SEA.
引用
下载
收藏
页数:25
相关论文
共 50 条
  • [21] Stacking ensemble of machine learning methods for landslide susceptibility mapping in Zhangjiajie City, Hunan Province, China
    Yuke Huan
    Lei Song
    Umair Khan
    Baoyi Zhang
    Environmental Earth Sciences, 2023, 82
  • [22] Stacking ensemble of machine learning methods for landslide susceptibility mapping in Zhangjiajie City, Hunan Province, China
    Huan, Yuke
    Song, Lei
    Khan, Umair
    Zhang, Baoyi
    ENVIRONMENTAL EARTH SCIENCES, 2023, 82 (01)
  • [23] Effects of Variable Selection on the Landslide Susceptibility Assessment using Machine Learning Techniques
    Park, Soyoung
    Son, Sanghun
    Han, Jihye
    Lee, Seonghyeock
    Kim, Seongheon
    Kim, Jinsoo
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS X, 2019, 11156
  • [24] Landslide Susceptibility Assessment in Active Tectonic Areas Using Machine Learning Algorithms
    Qi, Tianjun
    Meng, Xingmin
    Zhao, Yan
    REMOTE SENSING, 2024, 16 (15)
  • [25] Impact of sampling for landslide susceptibility assessment using interpretable machine learning models
    Wu, Bin
    Shi, Zhenming
    Zheng, Hongchao
    Peng, Ming
    Meng, Shaoqiang
    Bulletin of Engineering Geology and the Environment, 2024, 83 (11)
  • [26] High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data
    Sharma, Nirdesh
    Saharia, Manabendra
    Ramana, G. V.
    CATENA, 2024, 235
  • [27] Landslide Susceptibility Mapping Using the Stacking Ensemble Machine Learning Method in Lushui, Southwest China
    Hu, Xudong
    Zhang, Han
    Mei, Hongbo
    Xiao, Dunhui
    Li, Yuanyuan
    Li, Mengdi
    APPLIED SCIENCES-BASEL, 2020, 10 (11):
  • [28] Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya
    Chowdhuri, Indrajit
    Pal, Subodh Chandra
    Chakrabortty, Rabin
    Malik, Sadhan
    Das, Biswajit
    Roy, Paramita
    NATURAL HAZARDS, 2021, 107 (01) : 697 - 722
  • [29] Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya
    Indrajit Chowdhuri
    Subodh Chandra Pal
    Rabin Chakrabortty
    Sadhan Malik
    Biswajit Das
    Paramita Roy
    Natural Hazards, 2021, 107 : 697 - 722
  • [30] Ensemble learning landslide susceptibility assessment with optimized non-landslide samples selection
    Lu, Jiangang
    He, Yi
    Zhang, Lifeng
    Zhang, Qing
    Gao, Binghai
    Chen, Hesheng
    Fang, Yumin
    GEOMATICS NATURAL HAZARDS & RISK, 2024, 15 (01)