Deterioration in effective thermal conductivity of aqueous magnetic nanofluids

被引:16
|
作者
Altan, Cem L. [1 ,2 ,3 ]
Gurten, Berna [1 ]
Sommerdijk, Nico A. J. M. [2 ,3 ,4 ]
Bucak, Seyda [1 ]
机构
[1] Yeditepe Univ, Dept Chem Engn, TR-34755 Istanbul, Turkey
[2] Eindhoven Univ Technol, Dept Chem Engn & Chem, Lab Mat & Interface Chem, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Chem Engn & Chem, Soft Matter CryoTEM Res Unit, NL-5600 MB Eindhoven, Netherlands
[4] Eindhoven Univ Technol, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
关键词
HEAT-TRANSFER; TEMPERATURE-DEPENDENCE; ETHYLENE-GLYCOL; NANOPARTICLE COLLOIDS; FE3O4; NANOFLUID; ENHANCEMENT; VISCOSITY; MIXTURE; FLUIDS;
D O I
10.1063/1.4902441
中图分类号
O59 [应用物理学];
学科分类号
摘要
Common heat transfer fluids have low thermal conductivities, which decrease their efficiency in many applications. On the other hand, solids have much higher thermal conductivity values. Previously, it was shown that the addition of different nanoparticles to various base fluids increases the thermal conductivity of the carrier fluid remarkably. However, there are limited studies that focus on the thermal conductivity of magnetic fluids. In this study, thermal conductivity of magnetic nanofluids composed of magnetite nanoparticles synthesized via co-precipitation and thermal decomposition methods is investigated. Results showed that the addition of magnetite nanoparticles decreased the thermal conductivity of water and ethylene glycol. This decrease was found to increase with increasing particle concentration and to be independent of the synthesis method, the type of surfactant, and the interfacial thermal resistance. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A model of nanofluids effective thermal conductivity based on dimensionless groups
    Moghadassi, A. R.
    Masoud Hosseini, S.
    Henneke, D.
    Elkamel, A.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2009, 96 (01) : 81 - 84
  • [32] The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles
    Feng, Yongjin
    Yu, Boming
    Xu, Peng
    Zou, Mingqing
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (10) : 3164 - 3171
  • [33] Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids
    Bhattacharya, P
    Saha, SK
    Yadav, A
    Phelan, PE
    Prasher, RS
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) : 6492 - 6494
  • [34] A Simple Analytical Model for Calculating the Effective Thermal Conductivity of Nanofluids
    Sohrabi, N.
    Masoumi, N.
    Behzadmehr, A.
    Sarvari, S.
    HEAT TRANSFER-ASIAN RESEARCH, 2010, 39 (03): : 141 - 150
  • [35] A model of nanofluids effective thermal conductivity based on dimensionless groups
    A. R. Moghadassi
    S. Masoud Hosseini
    D. Henneke
    A. Elkamel
    Journal of Thermal Analysis and Calorimetry, 2009, 96 : 81 - 84
  • [36] Modified model for the effective thermal conductivity of metal oxide nanofluids
    Pasrija, Ritu
    Gupta, Shefali
    MATERIALS TODAY-PROCEEDINGS, 2021, 34 : 621 - 625
  • [37] The Effective Thermal Conductivity of Water Based Nanofluids at Different Temperatures
    Srinivas, T.
    Vinod, A. Venu
    JOURNAL OF TESTING AND EVALUATION, 2016, 44 (01) : 280 - 289
  • [38] Predicting the effective thermal conductivity of carbon nanotube based nanofluids
    Sastry, N. N. Venkata
    Bhunia, Avijit
    Sundararajan, T.
    Das, Sarit K.
    NANOTECHNOLOGY, 2008, 19 (05)
  • [39] Thermal conductivity of nanofluids
    Assael, M. J.
    Chen, C. -F.
    Metaxa, I. N.
    Wakeham, W. A.
    Thermal Conductivity 27: Thermal Expansion 15, 2005, 27 : 153 - 163
  • [40] Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
    Zhang, Xing
    Gu, Hua
    Fujii, Motoo
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (04)