Deterioration in effective thermal conductivity of aqueous magnetic nanofluids

被引:16
|
作者
Altan, Cem L. [1 ,2 ,3 ]
Gurten, Berna [1 ]
Sommerdijk, Nico A. J. M. [2 ,3 ,4 ]
Bucak, Seyda [1 ]
机构
[1] Yeditepe Univ, Dept Chem Engn, TR-34755 Istanbul, Turkey
[2] Eindhoven Univ Technol, Dept Chem Engn & Chem, Lab Mat & Interface Chem, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Chem Engn & Chem, Soft Matter CryoTEM Res Unit, NL-5600 MB Eindhoven, Netherlands
[4] Eindhoven Univ Technol, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
关键词
HEAT-TRANSFER; TEMPERATURE-DEPENDENCE; ETHYLENE-GLYCOL; NANOPARTICLE COLLOIDS; FE3O4; NANOFLUID; ENHANCEMENT; VISCOSITY; MIXTURE; FLUIDS;
D O I
10.1063/1.4902441
中图分类号
O59 [应用物理学];
学科分类号
摘要
Common heat transfer fluids have low thermal conductivities, which decrease their efficiency in many applications. On the other hand, solids have much higher thermal conductivity values. Previously, it was shown that the addition of different nanoparticles to various base fluids increases the thermal conductivity of the carrier fluid remarkably. However, there are limited studies that focus on the thermal conductivity of magnetic fluids. In this study, thermal conductivity of magnetic nanofluids composed of magnetite nanoparticles synthesized via co-precipitation and thermal decomposition methods is investigated. Results showed that the addition of magnetite nanoparticles decreased the thermal conductivity of water and ethylene glycol. This decrease was found to increase with increasing particle concentration and to be independent of the synthesis method, the type of surfactant, and the interfacial thermal resistance. (C) 2014 AIP Publishing LLC.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Study of the effective thermal conductivity of nanofluids
    Shukla, Ratnesh K.
    Dhir, Vijay K.
    PROCEEDINGS OF THE ASME HEAT TRANSFER DIVISION 2005, VOL 2, 2005, 376-2 : 537 - 541
  • [2] Model for effective thermal conductivity of nanofluids
    Xue, QZ
    PHYSICS LETTERS A, 2003, 307 (5-6) : 313 - 317
  • [3] Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotubes nanofluids)
    Wen, DS
    Ding, YL
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2004, 18 (04) : 481 - 485
  • [4] Simultaneous measurement of the effective thermal conductivity and effective thermal diffusivity of nanofluids
    Murshed, S. M. Sohel
    Leong, Kai Choong
    Yang, Chun
    PROCEEDINGS OF THE MICRO/NANOSCALE HEAT TRANSFER INTERNATIONAL CONFERENCE 2008, PTS A AND B, 2008, : 549 - 553
  • [5] Numerical study of the effective thermal conductivity of nanofluids
    Shulkla, Ratnesh K.
    Dhir, Vijay K.
    HT2005: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2005, VOL 1, 2005, : 449 - 457
  • [6] Effective thermal conductivity of nanofluids: the effects of microstructure
    Fan, Jing
    Wang, Liqiu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (16)
  • [7] A reliablemodel to estimate the effective thermal conductivity of nanofluids
    Zendehboudi, Alireza
    Saidur, R.
    HEAT AND MASS TRANSFER, 2019, 55 (02) : 397 - 411
  • [8] Effective Thermal Conductivity of Nanofluids: Measurement and Prediction
    Francisco E. Berger Bioucas
    Michael H. Rausch
    Jochen Schmidt
    Andreas Bück
    Thomas M. Koller
    Andreas P. Fröba
    International Journal of Thermophysics, 2020, 41
  • [9] Effective Thermal Conductivity of Nanofluids: Measurement and Prediction
    Bioucas, Francisco E. Berger
    Rausch, Michael H.
    Schmidt, Jochen
    Bueck, Andreas
    Koller, Thomas M.
    Froeba, Andreas P.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2020, 41 (05)
  • [10] On the Effective Thermal Conductivity of Nanofluids With Fractal Aggregation
    Subramaniam, C. G.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2019, 141 (04):