Optically controlled polariton condensate molecules

被引:10
|
作者
Cherotchenko, E. D. [1 ]
Sigurdsson, H. [2 ]
Askitopoulos, A. [3 ]
Nalitov, A., V [4 ,5 ,6 ]
机构
[1] Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[3] Skolkovo Inst Sci & Technol, Bolshoy Blvd 30,Bldg 1, Moscow 121205, Russia
[4] ITMO Univ, St Petersburg 197101, Russia
[5] Univ Wolverhampton, Fac Sci & Engn, Wulfruna St, Wolverhampton WV1 1LY, England
[6] Univ Clermont Auvergne, Inst Pascal, PHOTON N2, F-63001 Clermont Ferrand, France
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
All Open Access; Green;
D O I
10.1103/PhysRevB.103.115309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A condensed-matter platform for analog simulation of complex two-dimensional molecular bonding configurations, based on optically trapped exciton-polariton condensates is proposed. The stable occupation of polariton condensates in the excited states of their optically configurable potential traps permits emulation of excited atomic orbitals. A classical mean-field model describing the dissipative coupling mechanism between p-orbital condensates is derived, identifying lowest-threshold condensation solutions as a function of trap parameters corresponding to bound and antibound pi and sigma bonding configurations, similar to those in quantum chemistry.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Intrinsic decoherence mechanisms in the microcavity polariton condensate
    Love, A. P. D.
    Krizhanovskii, D. N.
    Whittaker, D. M.
    Bouchekioua, R.
    Sanvitto, D.
    Al Rizeiqi, S.
    Bradley, R.
    Skolnick, M. S.
    Eastham, P. R.
    Andre, R.
    Dang, Le Si
    PHYSICAL REVIEW LETTERS, 2008, 101 (06)
  • [42] Real-space collapse of a polariton condensate
    Dominici, L.
    Petrov, M.
    Matuszewski, M.
    Ballarini, D.
    De Giorgi, M.
    Colas, D.
    Cancellieri, E.
    Fernandez, B. Silva
    Bramati, A.
    Gigli, G.
    Kavokin, A.
    Laussy, F.
    Sanvitto, D.
    NATURE COMMUNICATIONS, 2015, 6
  • [43] Polariton condensate trapping by parametric pair scattering
    Paschos, G. G.
    Tzimis, A.
    Tsintzos, S., I
    Savvidis, P. G.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (36)
  • [44] Dynamics of Two Dark Solitons in a Polariton Condensate
    张义灵
    贾春玉
    梁兆新
    Chinese Physics Letters, 2022, 39 (02) : 10 - 14
  • [45] Dynamics of Two Dark Solitons in a Polariton Condensate
    Zhang, Yiling
    Jia, Chunyu
    Liang, Zhaoxin
    CHINESE PHYSICS LETTERS, 2022, 39 (02)
  • [46] Room-temperature superfluidity in a polariton condensate
    Lerario G.
    Fieramosca A.
    Barachati F.
    Ballarini D.
    Daskalakis K.S.
    Dominici L.
    De Giorgi M.
    Maier S.A.
    Gigli G.
    Kéna-Cohen S.
    Sanvitto D.
    Nature Physics, 2017, 13 (9) : 837 - 841
  • [47] A polariton condensate in a photonic crystal potential landscape
    Winkler, Karol
    Fischer, Julian
    Schade, Anne
    Amthor, Matthias
    Dall, Robert
    Gessler, Jonas
    Emmerling, Monika
    Ostrovskaya, Elena A.
    Kamp, Martin
    Schneider, Christian
    Hoefling, Sven
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [48] Nonresonant optical control of a spinor polariton condensate
    Askitopoulos, A.
    Kalinin, K.
    Liew, T. C. H.
    Cilibrizzi, P.
    Hatzopoulos, Z.
    Savvidis, P. G.
    Berloff, N. G.
    Lagoudakis, P. G.
    PHYSICAL REVIEW B, 2016, 93 (20)
  • [49] Room-temperature superfluidity in a polariton condensate
    Lerario, Giovanni
    Fieramosca, Antonio
    Barachati, Fabio
    Ballarini, Dario
    Daskalakis, Konstantinos S.
    Dominici, Lorenzo
    De Giorgi, Milena
    Maier, Stefan A.
    Gigli, Giuseppe
    Kena-Cohen, Stephane
    Sanvitto, Daniele
    NATURE PHYSICS, 2017, 13 (09) : 837 - +
  • [50] Engineering Photon Statistics in a Spinor Polariton Condensate
    Baryshev, S.
    Zasedatelev, A.
    Sigurdsson, H.
    Gnusov, I
    Topfer, J. D.
    Askitopoulos, A.
    Lagoudakis, P. G.
    PHYSICAL REVIEW LETTERS, 2022, 128 (08)