On the periodic Toda lattice with a self-consistent source

被引:9
|
作者
Babajanov, Bazar [1 ]
Feckan, Michal [2 ,3 ]
Urazboev, Gayrat [1 ]
机构
[1] Urgench State Univ, Dept Math & Phys, Urgench 220100, Uzbekistan
[2] Comenius Univ, Dept Math Anal & Numer Math, Bratislava 84215, Slovakia
[3] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
关键词
Toda lattice; Hill's equation; Self-consistent source; Inverse spectral problem; Trace formulas;
D O I
10.1016/j.cnsns.2014.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to the application of inverse spectral problem for integration of the periodic Toda lattice with self-consistent source. The effective method of solution of the inverse spectral problem for the discrete Hill's equation is presented. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1223 / 1234
页数:12
相关论文
共 50 条
  • [31] Self-consistent approximation for fluids and lattice gases
    Pini, D
    Stell, G
    Hoye, JS
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1998, 19 (04) : 1029 - 1038
  • [32] Self-consistent kinetic lattice Monte Carlo
    Horsfield, Andrew
    Dunham, Scott
    Fujitani, Hideaki
    Materials Research Society Symposium - Proceedings, 1999, 538 : 285 - 290
  • [33] Self-consistent description of superconductivity in the crystal lattice
    Poluektov, YM
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 955 - 956
  • [34] Self-consistent approximation for fluids and lattice gases
    Department of Chemistry, State Univ. New York at Stony Brook, Stony Brook, NY 11794-3400, United States
    不详
    Int J Thermophys, 4 SPEC.ISS. (1029-1038):
  • [35] Self-consistent kinetic lattice Monte Carlo
    Horsfield, A
    Dunham, S
    Fujitani, H
    MULTISCALE MODELLING OF MATERIALS, 1999, 538 : 285 - 290
  • [36] The self-consistent diagram approximation for lattice systems
    G.S. Bokun
    Ya.G. Groda
    V.V. Belov
    C. Uebing
    V.S. Vikhrenko
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 15 : 297 - 304
  • [37] INTEGRATION OF EQUATIONS OF KAUP SYSTEM KIND WITH SELF-CONSISTENT SOURCE IN CLASS OF PERIODIC FUNCTIONS
    Yakhshimuratov, A. B.
    Babajanov, B. A.
    UFA MATHEMATICAL JOURNAL, 2020, 12 (01): : 103 - 113
  • [38] THE KORTEWEG-DE VRIES EQUATION WITH A SELF-CONSISTENT SOURCE IN THE CLASS OF PERIODIC FUNCTIONS
    Khasanov, A. B.
    Yakhshimuratov, A. B.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 164 (02) : 1008 - 1015
  • [39] The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions
    A. B. Khasanov
    A. B. Yakhshimuratov
    Theoretical and Mathematical Physics, 2010, 164 : 1008 - 1015
  • [40] Integrability of the semi-discrete Toda equation with self-consistent sources
    Wang, Hong-Yan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) : 1128 - 1138