End-to-End Learning in Optical Fiber Communications: Experimental Demonstration and Future Trends

被引:8
|
作者
Karanov, Boris [1 ,2 ,3 ]
Oliari, Vinicius [2 ]
Chagnon, Mathieu [3 ]
Liga, Gabriele [2 ]
Alvarado, Alex [2 ]
Aref, Vahid [3 ]
Lavery, Domanic [1 ]
Bayvel, Polina [1 ]
Schmalen, Laurent [4 ]
机构
[1] UCL, Dept Elect & Elect Engn, Opt Networks Grp, London WC1E 7JE, England
[2] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[3] Nokia Bell Labs, D-70435 Stuttgart, Germany
[4] Karlsruhe Inst Technol, Commun Engn Lab, D-76131 Karlsruhe, Germany
基金
欧洲研究理事会; 欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
D O I
10.1109/ECOC48923.2020.9333265
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fiber-optic auto-encoders are demonstrated on an intensity modulation/direct detection test-bed, outperforming state-of-the-art signal processing. Algorithms for end-to-end optimization using experimentally collected data are discussed. The end-to-end learning framework is extended for performing optimization of the symbol distribution in probabilistically-shaped coherent systems.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Experimental quantum end-to-end learning on a superconducting processor
    Pan, Xiaoxuan
    Cao, Xi
    Wang, Weiting
    Hua, Ziyue
    Cai, Weizhou
    Li, Xuegang
    Wang, Haiyan
    Hu, Jiaqi
    Song, Yipu
    Deng, Dong-Ling
    Zou, Chang-Ling
    Wu, Re-Bing
    Sun, Luyan
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [22] Experimental quantum end-to-end learning on a superconducting processor
    Xiaoxuan Pan
    Xi Cao
    Weiting Wang
    Ziyue Hua
    Weizhou Cai
    Xuegang Li
    Haiyan Wang
    Jiaqi Hu
    Yipu Song
    Dong-Ling Deng
    Chang-Ling Zou
    Re-Bing Wu
    Luyan Sun
    npj Quantum Information, 9
  • [23] END-TO-END LEARNING OF SECURE WIRELESS COMMUNICATIONS: CONFIDENTIAL TRANSMISSION AND AUTHENTICATION
    Sun, Zhuo
    Wu, Hengmiao
    Zhao, Chenglin
    Yue, Gang
    IEEE WIRELESS COMMUNICATIONS, 2020, 27 (05) : 88 - 95
  • [24] End-to-End Deep Learning IRS-assisted Communications Systems
    Alawad, Mohamad A.
    Hamdan, Mutasem Q.
    Hamdi, Khairi A.
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [25] Semi-Supervised End-to-End Learning for Integrated Sensing and Communications
    Mateos-Ramos, Jose Miguel
    Chatelier, Baptiste
    Hager, Christian
    Keskin, Musa Furkan
    Le Magoarou, Luc
    Wymeersch, Henk
    2024 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING FOR COMMUNICATION AND NETWORKING, ICMLCN 2024, 2024, : 132 - 138
  • [26] Deep-learning-based multi-user framework for end-to-end fiber-MMW communications
    Li, Zhongya
    Jia, Junlian
    Li, Guoqiang
    Dong, Boyu
    Shen, Wangwei
    Huang, Changle
    Shi, Jianyang
    Chi, Nan
    Zhang, Junwen
    OPTICS EXPRESS, 2023, 31 (10) : 15239 - 15255
  • [27] Demonstration of distributed collaborative learning with end-to-end QoT estimation in multi-domain elastic optical networks
    Chen, Xiaoliang
    Li, Baojia
    Proietti, Roberto
    Liu, Che-Yu
    Zhu, Zuqing
    Ben Yoo, S. J.
    OPTICS EXPRESS, 2019, 27 (24) : 35700 - 35709
  • [28] Experimental Demonstration of a Novel End-to-End SAR Range Ambiguity Suppression Method
    Dogan, Ozan
    Ignatenko, Vladimir
    Muff, Darren
    Lamentowski, Leszek
    Nottingham, Matthew
    Radius, Andrea
    Leprovost, Pierre
    Seilonen, Tino
    2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,
  • [29] Experimental evaluation of congestion control for CoAP communications without end-to-end reliability
    Betzler, August
    Isern, Javier
    Gomez, Caries
    Demirkol, Ilker
    Paradells, Josep
    AD HOC NETWORKS, 2016, 52 : 183 - 194
  • [30] An End-to-end Approach for Learning and Generating Complex Robot Motions from Demonstration
    Kordia, Ali H.
    Melo, Francisco S.
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 1008 - 1014