Deep mantle roots of the Zarnitsa kimberlite pipe, Siberian craton, Russia: Evidence for multistage polybaric interaction with mantle melts

被引:3
|
作者
Ashchepkov, Igor [1 ]
Medvedev, Nikolay [2 ]
Ivanov, Alexander [3 ]
Vladykin, Nikolay [4 ]
Ntaflos, Theodoros [5 ]
Downes, Hilary [6 ]
Saprykin, Anatoliy [3 ]
Tolstov, Alxander [3 ]
Vavilov, Mikhail [1 ]
Shmarov, Gleb [2 ]
机构
[1] Sobolev VS Inst Geol & Mineral SB RAS, Novosibirsk, Russia
[2] Nikolaev Inst Inorgan Chem SB RAS, Novosibirsk, Russia
[3] ALROSA, Sci Res Geol Enterprise, Mirny, Russia
[4] Vinigradov Inst Geochem SB RAS, Irkutsk, Russia
[5] Univ Vienna, Vienna, Austria
[6] Univ London, Birkbeck Coll, Dept Earth & Planetary Sci, London, England
关键词
Mantle; Layering; Lithospheric mantle; Metasomatism; Kimberlite; Garnet ilmenite; Geothermobarometry; Oxidation state; TRACE-ELEMENT GEOCHEMISTRY; LITHOSPHERIC MANTLE; PERIDOTITE XENOLITHS; UDACHNAYA KIMBERLITE; OXYGEN FUGACITY; CONTINENTAL LITHOSPHERE; PARTITION-COEFFICIENTS; GARNET XENOCRYSTS; CARBONATE MELTS; PHASE-RELATIONS;
D O I
10.1016/j.jseaes.2021.104756
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Zarnitsa kimberlite pipe in Central Yakutia contains pyrope garnets with Cr2O3 ranging from 9 to 19.3 wt% derived from the asthenospheric mantle. They show mostly S-shaped, inflected rare earth element (REE) patterns for dunitic and harzburgitic, lherzolitic and harzburgitic varieties and all are rich in high field strength elements (HFSE) due to reaction with protokimberlite melts. Lithospheric garnets (<9 wt% Cr2O3) show a similar division into four groups but have more symmetric trace element patterns. Cr-diopsides suggest reactions with hydrous alkaline, protokimberlitic and primary (hydrous) partial melts. Cr-diopsides of metasomatic origin have inclined REE patterns and high LILE, U, Th and Zr concentrations. Four groups in REE of Ti-rich Cr-diopsides, and augites have asymmetric bell-like REE patterns and are HFSE-rich. Mg-ilmenites low in REE were formed within dunite conduits. Ilmenite derived from differentiated melts have inclined REE patterns with LREE similar to 100 x chondrite levels. Thermobarometry for dunites shows a 34 mWm(-2) geotherm with a HT branch (>50 mWm(-2)) at 6-9 GPa, and a stepped HT geotherm with heated pyroxenite lenses at four levels from 6.5 to 3.5 GPa. Parental melts calculated with KDs suggest that augites and high-Cr garnets in the lithosphere base reacted with essentially carbonatitic melts while garnets from lower pressure show subduction peaks in U, Ba and Pb. The roots of the Zarnitsa pipe served to transfer large portions of deep (>9 GPa) protokimberlite melts to the lithosphere. Smaller diamonds were dissolved due to the elevated oxidation state but in peripheral zones large diamonds could grow.
引用
收藏
页数:22
相关论文
共 39 条
  • [21] Geochemical evidence for carbon and chlorine enrichments in the mantle source of kimberlites (Udachnaya pipe, Siberian craton)
    Kitayama, Yumi
    Thomassot, Emilie
    Galy, Albert
    Korsakov, Andrey
    Golovin, Alexander
    d'Eyrames, Elisabeth
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2021, 315 : 295 - 316
  • [22] Lithospheric mantle heterogeneity beneath the Siberian craton: Evidence from garnet xenocryst database with implications for kimberlite compositions
    Kostrovitsky, S. I.
    Tappe, S.
    Yakovlev, D. A.
    Ivanov, A. S.
    Spetsius, Z. V.
    Ashchepkov, I. V.
    GONDWANA RESEARCH, 2024, 128 : 298 - 314
  • [23] ALKALI-CONTAINING MINERALS WITHIN MELT INCLUSIONS IN OLIVINE OF MANTLE XENOLITHS FROM BULTFONTEIN KIMBERLITE PIPE (KAAPVAAL CRATON): EVIDENCE ON HIGH CONCENTRATIONS OF ALKALIS IN KIMBERLITE MELTS
    Tarasov, A. A.
    Golovin, A. V.
    Sharygin, I. S.
    GEODYNAMICS & TECTONOPHYSICS, 2022, 13 (04):
  • [24] The Sytykanskaya kimberlite pipe:Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit,Yakutia,Russia
    IVAshchepkov
    AMLogvinova
    LFReimers
    TNtaflos
    ZVSpetsius
    NVVladykin
    HDownes
    DSYudin
    AVTravin
    LVMakovchuk
    VSPalesskiy
    OSKhmelnikova
    Geoscience Frontiers, 2015, (05) : 687 - 714
  • [25] The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia
    Ashchepkov, I. V.
    Logvinova, A. M.
    Reimers, L. F.
    Ntaflos, T.
    Spetsius, Z. V.
    Vladykin, N. V.
    Downes, H.
    Yudin, D. S.
    Travin, A. V.
    Makovchuk, I. V.
    Palesskiy, V. S.
    Khmel'nikova, O. S.
    GEOSCIENCE FRONTIERS, 2015, 6 (05) : 687 - 714
  • [26] Dissolution of mantle orthopyroxene in kimberlitic melts: Petrographic, geochemical and melt inclusion constraints from an orthopyroxenite xenolith from the Udachnaya-East kimberlite (Siberian Craton, Russia)
    Abersteiner, Adam
    Kamenetsky, Vadim S.
    Golovin, Alexander
    Goemann, Karsten
    Ehrig, Kathy
    LITHOS, 2021, 398
  • [27] Phlogopite in mantle xenoliths and kimberlite from the Grib pipe,Arkhangelsk province,Russia:Evidence for multi-stage mantle metasomatism and origin of phlogopite in kimberlite附视频
    AVKargin
    LVSazonova
    AANosova
    NMLebedeva
    YuAKostitsyn
    EVKovalchuk
    VVTretyachenko
    YaSTikhomirova
    Geoscience Frontiers, 2019, (05) : 1941 - 1959
  • [28] Graphite-diamond relations in mantle rocks: Evidence from an eclogitic xenolith from the Udachnaya kimberlite (Siberian Craton)
    Mikhailenko, Denis S.
    Korsakov, Andrey V.
    Zelenovskiy, Pavel S.
    Golovin, Alexander V.
    AMERICAN MINERALOGIST, 2016, 101 (9-10) : 2155 - 2167
  • [29] Comparison of mantle lithosphere beneath early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts
    IVAshchepkov
    SSKuligin
    NVVladykin
    HDownes
    MAVavilov
    ENNigmatulina
    SABabushkina
    NSTychkov
    OSKhmelnikova
    Geoscience Frontiers, 2016, (04) : 639 - 662
  • [30] Comparison of mantle lithosphere beneath early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts
    Ashchepkov, I. V.
    Kuligin, S. S.
    Vladykin, N. V.
    Downes, H.
    Vavilov, M. A.
    Nigmatulina, E. N.
    Babushkina, S. A.
    Tychkov, N. S.
    Khmelnikova, O. S.
    GEOSCIENCE FRONTIERS, 2016, 7 (04) : 639 - 662