Kernelization of the 3-path vertex cover problem

被引:3
|
作者
Brause, Christoph [1 ]
Schiermeyer, Ingo [1 ]
机构
[1] Tech Univ Bergakad Freiberg, Inst Discrete Math & Algebra, Pruferstr 1, D-09599 Freiberg, Germany
关键词
k-path vertex cover; Vertex cover; Kernelization; Crown reduction; P-3; PROBLEM; APPROXIMATION ALGORITHM; GRAPHS;
D O I
10.1016/j.disc.2015.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The 3-path vertex cover problem is an extension of the well-known vertex cover problem. It asks for a vertex set S subset of V(G) of minimum cardinality such that G - S only contains independent vertices and edges. In this paper we will present a polynomial algorithm which computes two disjoint sets T-1, T-2 of vertices of G such that (i) for any 3-path vertex cover S' in G[T-2], S' U T-1 is a 3-path vertex cover in G, (ii) there exists a minimum 3-path vertex cover in G which contains T-1 and (iii) vertical bar T-2 vertical bar <= 6 . psi(3)(G[T-2]), where psi(3)(G) is the cardinality of a minimum 3-path vertex cover and T-2 is the kernel of G. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1935 / 1939
页数:5
相关论文
共 50 条
  • [41] On the vertex cover P3 problem parameterized by treewidth
    Tu, Jianhua
    Wu, Lidong
    Yuan, Jing
    Cui, Lei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) : 414 - 425
  • [42] Minimum k-path vertex cover
    Bresar, Bostjan
    Kardos, Frantisek
    Katrenic, Jan
    Semanisin, Gabriel
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) : 1189 - 1195
  • [43] On kernels for d-path vertex cover
    Červený R.
    Choudhary P.
    Suchý O.
    Journal of Computer and System Sciences, 2024, 144
  • [44] Distributed memorization for the κ-VERTEX COVER problem
    Taillon, Peter J.
    PARALLEL AND DISTRIBUTED PROCESSING AND APPLICATIONS, PROCEEDINGS, 2007, 4742 : 148 - 159
  • [45] (Strong) Rainbow Connection on the Splitting of 3-Path
    Septyanto, F.
    Sugeng, K. A.
    INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2016 (ISCPMS 2016), 2017, 1862
  • [46] A DECOMPOSITION STRATEGY FOR THE VERTEX COVER PROBLEM
    BERTOLAZZI, P
    SASSANO, A
    INFORMATION PROCESSING LETTERS, 1989, 31 (06) : 299 - 304
  • [47] The Minimum Generalized Vertex Cover Problem
    Hassin, Refael
    Levin, Asaf
    ACM TRANSACTIONS ON ALGORITHMS, 2006, 2 (01) : 66 - 78
  • [48] Evolutionary algorithms and the vertex cover problem
    Oliveto, P. S.
    He, J.
    Yao, X.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 1870 - 1877
  • [49] The minimum generalized vertex cover problem
    Hassin, R
    Levin, A
    ALGORITHMS - ESA 2003, PROCEEDINGS, 2003, 2832 : 289 - 300
  • [50] Eternal Connected Vertex Cover Problem
    Fujito, Toshihiro
    Nakamura, Tomoya
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2020, 2020, 12337 : 181 - 192