REMOTE SENSING DATA AUGMENTATION THROUGH ADVERSARIAL TRAINING

被引:2
|
作者
Lv, Ning [1 ]
Ma, Hongxiang [1 ]
Chen, Chen [1 ]
Pei, Qingqi [1 ]
Zhou, Yang [2 ]
Xiao, Fenglin [2 ]
Li, Ji [2 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Minist Water Resources China, Beijing 101400, Peoples R China
基金
中国国家自然科学基金;
关键词
data augmentation; GAN; deep supervision; down-sampling;
D O I
10.1109/IGARSS39084.2020.9324263
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a Generative Adversarial Network(GAN) is proposed for data augmentation of remote sensing images abstracted from Jiangsu province in China, i.e., D-sGAN(Deeply-supervised GAN). At First, to modulate the layer activations, a down-sampling scheme is designed based on the segmentation map. Then, the architecture of the generator is UNet++ with the proposed down-sampling module. Next, the generator of this net is deeply supervised by the discriminator using deep Convolutional Neural Network(CNN). This paper further proved that the proposed down-sampling module and the dense connection characteristics of UNet++ are significantly beneficial to the retention of semantic information of remote sensing images. Numerical results demonstrated that the images generated by D-sGAN could be used to improve accuracy of the segmentation network, with a better Fully Convolutional Networks Score(FCN-Score) compared to the GoGAN, SimGAN and CycleGAN models.
引用
收藏
页码:2511 / 2514
页数:4
相关论文
共 50 条
  • [41] Generative adversarial network augmentation for solving the training data imbalance problem in crop classification
    Shumilo, Leonid
    Okhrimenko, Anton
    Kussul, Nataliia
    Drozd, Sofiia
    Shkalikov, Oleh
    REMOTE SENSING LETTERS, 2023, 14 (11) : 1131 - 1140
  • [42] Data augmentation through multivariate scenario forecasting in Data Centers using Generative Adversarial Networks
    Jaime Pérez
    Patricia Arroba
    José M. Moya
    Applied Intelligence, 2023, 53 : 1469 - 1486
  • [43] PHYSICS-INFORMED DATA AUGMENTATION OF EXPERIMENTAL EROSION DATA THROUGH GENERATIVE ADVERSARIAL NETWORKS
    Zhang, Jun
    Li, Jamie
    Pei, Weiping
    Shirazi, Siamack
    PROCEEDINGS OF ASME 2024 FLUIDS ENGINEERING DIVISION SUMMER MEETING, VOL 2, FEDSM 2024, 2024,
  • [44] Data augmentation through multivariate scenario forecasting in Data Centers using Generative Adversarial Networks
    Perez, Jaime
    Arroba, Patricia
    Moya, Jose M.
    APPLIED INTELLIGENCE, 2023, 53 (02) : 1469 - 1486
  • [45] Data Augmentation and Few-Shot Change Detection in Forest Remote Sensing
    Zhu, Songyu
    Jing, Weipeng
    Kang, Peilun
    Emam, Mahmoud
    Li, Chao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 5919 - 5934
  • [46] Research on a ship target data augmentation method of visible remote sensing image
    Yu X.
    Hong S.
    Yu J.
    Lu Y.
    Peng Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2020, 41 (11): : 261 - 269
  • [47] Research on Remote Sensing Image Classification Based on Transfer Learning and Data Augmentation
    Wang, Liyuan
    Chen, Yulong
    Wang, Xiaoye
    Wang, Ruixing
    Chen, Hao
    Zhu, Yinhai
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2023, 2023, 14120 : 99 - 111
  • [48] Spectral Data Augmentation Using Deep Generative Model for Remote Chemical Sensing
    Son, Jungjae
    Byun, Hyung Joon
    Park, Munyeol
    Ha, Jeongjae
    Nam, Hyunwoo
    IEEE ACCESS, 2024, 12 : 98326 - 98337
  • [49] Interoperable access of remote sensing data through NWGISS
    Di, LP
    Yang, WL
    Deng, MX
    Deng, D
    McDonald, K
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 255 - 257
  • [50] Open data and open source for remote sensing training in ecology
    Rocchini, Duccio
    Petras, Vaclav
    Petrasova, Anna
    Horning, Ned
    Furtkevicova, Ludmila
    Neteler, Markus
    Leutner, Benjamin
    Wegmann, Martin
    ECOLOGICAL INFORMATICS, 2017, 40 : 57 - 61