Global Well-Posedness and Analytic Smoothing Effect for the Dissipative Nonlinear Schrodinger Equations

被引:9
|
作者
Hoshino, Gaku [1 ]
机构
[1] Osaka Univ, Toyonaka, Osaka 5600043, Japan
关键词
Nonlinear Schrodinger equations; Global well-posedness; Sobolev space of fractional order; Large data; Analytic smoothing effect; SPACE;
D O I
10.1007/s10884-018-9709-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global Cauchy problem for the nonlinear Schrodinger equations in the Sobolev space of fractional order. In particular, we show the global well-posedness and the analytic smoothing effect for global solutions to a dissipative nonlinear Schrodinger equation for large data by applying a priori estimate in the Sobolev space of fractional order.
引用
收藏
页码:2339 / 2351
页数:13
相关论文
共 50 条
  • [1] Global Well-Posedness and Analytic Smoothing Effect for the Dissipative Nonlinear Schrödinger Equations
    Gaku Hoshino
    [J]. Journal of Dynamics and Differential Equations, 2019, 31 : 2339 - 2351
  • [2] WELL-POSEDNESS AND SMOOTHING EFFECT FOR GENERALIZED NONLINEAR SCHRODINGER EQUATIONS
    Bienaime, Pierre-Yves
    Boulkhemair, Abdesslam
    [J]. ANALYSIS & PDE, 2018, 11 (05): : 1241 - 1284
  • [3] Global Well-Posedness of the Derivative Nonlinear Schrodinger Equations on T
    Win, Yin Yin Su
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (01): : 51 - 88
  • [4] Well-posedness and local smoothing of solutions of Schrodinger, equations
    Ionescu, AD
    Kenig, CE
    [J]. MATHEMATICAL RESEARCH LETTERS, 2005, 12 (2-3) : 193 - 205
  • [5] The well-posedness for fractional nonlinear Schrodinger equations
    Peng, Li
    Zhou, Yong
    Ahmad, Bashir
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (07) : 1998 - 2005
  • [6] Global well-posedness for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 649 - 669
  • [7] Global well-posedness for nonlinear fourth-order Schrodinger equations
    Peng, Xiuyan
    Niu, Yi
    Liu, Jie
    Zhang, Mingyou
    Shen, Jihong
    [J]. BOUNDARY VALUE PROBLEMS, 2016, : 1 - 8
  • [8] DISSIPATIVE QUASI-GEOSTROPHIC EQUATIONS IN CRITICAL SOBOLEV SPACES: SMOOTHING EFFECT AND GLOBAL WELL-POSEDNESS
    Dong, Hongjie
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (04) : 1197 - 1211
  • [9] Analytic smoothing effect for global solutions to nonlinear Schrodinger equations
    Ozawa, T.
    Yamauchi, K.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (02) : 492 - 497
  • [10] GLOBAL WELL-POSEDNESS FOR NONLINEAR SCHRODINGER EQUATIONS WITH ENERGY-CRITICAL DAMPING
    Feng, Binhua
    Zhao, Dun
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,