WELL-POSEDNESS AND SMOOTHING EFFECT FOR GENERALIZED NONLINEAR SCHRODINGER EQUATIONS

被引:0
|
作者
Bienaime, Pierre-Yves [1 ]
Boulkhemair, Abdesslam [1 ]
机构
[1] Univ Nantes, Lab Math Jean Leray, CNRS, UMR6629, Nantes, France
来源
ANALYSIS & PDE | 2018年 / 11卷 / 05期
关键词
Cauchy problem; well-posedness; smoothing effect; nonlinear equation; Schrodinger; paradifferential; pseudodifferential; operator; paralinearization; CAUCHY-PROBLEM; LOCAL EXISTENCE;
D O I
10.2140/apde.2018.11.1241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We improve the result obtained by one of the authors, Bienaime (2014), and establish the well-posedness of the Cauchy problem for some nonlinear equations of Schrodinger type in the usual Sobolev space H-s (R-n) for s > n/2 + 2 instead of s > n/2+ 3. We also improve the smoothing effect of the solution and obtain the optimal exponent.
引用
收藏
页码:1241 / 1284
页数:44
相关论文
共 50 条