Generalised noncommutative geometry on finite groups and Hopf quivers

被引:3
|
作者
Majid, Shahn [1 ]
Tao, Wen-Qing [2 ,3 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[3] Hasselt Univ, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
关键词
Hopf algebra; nonsurjective calculus; quiver; duality; finite group; bimodule connection; BICOVARIANT DIFFERENTIAL CALCULI; QUANTUM GROUPS; RIEMANNIAN GEOMETRY; CLASSIFICATION; ALGEBRA;
D O I
10.4171/JNCG/345
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explore the differential geometry of finite sets where the differential structure is given by a quiver rather than as more usual by a graph. In the finite group case we show that the data for such a differential calculus is described by certain Hopf quiver data as familiar in the context of path algebras. We explore a duality between geometry on the function algebra vs geometry on the group algebra, i.e. on the dual Hopf algebra, illustrated by the noncommutative Riemannian geometry of the group algebra of S-3. We show how quiver geometries arise naturally in the context of quantum principal bundles. We provide a formulation of bimodule Riemannian geometry for quantum metrics on a quiver, with a fully worked example on 2 points; in the quiver case, metric data assigns matrices not real numbers to the edges of a graph. The paper builds on the general theory in our previous work [19].
引用
收藏
页码:1055 / 1116
页数:62
相关论文
共 50 条
  • [21] Normed Groups and Their Applications in Noncommutative Differential Geometry
    A. A. Pavlov
    Journal of Mathematical Sciences, 2003, 113 (5) : 675 - 682
  • [22] Sobolev algebras on Lie groups and noncommutative geometry
    Arhancet, Cedric
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2024, 18 (01) : 451 - 500
  • [23] Distances in finite spaces from noncommutative geometry
    Iochum, B
    Krajewski, T
    Martinetti, P
    JOURNAL OF GEOMETRY AND PHYSICS, 2001, 37 (1-2) : 100 - 125
  • [24] McKay Quivers and Lusztig Algebras of Some Finite Groups
    Ragnar-Olaf Buchweitz
    Eleonore Faber
    Colin Ingalls
    Matthew Lewis
    Algebras and Representation Theory, 2023, 26 : 433 - 469
  • [25] McKay Quivers and Lusztig Algebras of Some Finite Groups
    Buchweitz, Ragnar-Olaf
    Faber, Eleonore
    Ingalls, Colin
    Lewis, Matthew
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (02) : 433 - 469
  • [26] Finite quantum field theory in noncommutative geometry
    Grosse, H
    Klimcik, C
    Presnajder, P
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 231 - 244
  • [27] Coquasitriangular structures on Hopf quivers
    Huang, Hua-Lin
    Tao, Wen-Qing
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (08)
  • [28] On generalised subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Beidleman, James
    Feldman, A. D.
    Ragland, M. F.
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (11-12) : 1066 - 1071
  • [29] ON GENERALISED PRONORMAL SUBGROUPS OF FINITE GROUPS
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Feldman, A. D.
    Ragland, M. F.
    GLASGOW MATHEMATICAL JOURNAL, 2014, 56 (03) : 691 - 703
  • [30] On generalised subnormal subgroups of finite groups
    A. Ballester-Bolinches
    S. F. Kamornikov
    V. N. Tyutyanov
    Ricerche di Matematica, 2022, 71 : 205 - 209