Conditional variance estimator for sufficient dimension reduction

被引:2
|
作者
Fertl, Lukas [1 ]
Bura, Efstathia [1 ]
机构
[1] TU Wien, Fac Math & Geoinformat, Inst Stat & Math Methods Econ, Vienna, Austria
基金
奥地利科学基金会;
关键词
Regression; nonparametric; mean subspace; minimum average variance estimation; dimension; reduction; SLICED INVERSE REGRESSION;
D O I
10.3150/21-BEJ1402
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Conditional Variance Estimation (CVE) is a novel sufficient dimension reduction (SDR) method for additive error regressions with continuous predictors and link function. It operates under the assumption that the predictors can be replaced by a lower dimensional projection without loss of information. Conditional Variance Estimation is fully data driven, does not require the restrictive linearity and constant variance conditions, and is not based on inverse regression as the majority of moment and likelihood based sufficient dimension reduction methods. CVE is shown to be consistent and its objective function to be uniformly convergent. CVE outperforms the mean average variance estimation, (MAVE), its main competitor, in several simulation settings, remains on par under others, while it always outperforms inverse regression based linear SDR methods, such as Sliced Inverse Regression.
引用
收藏
页码:1862 / 1891
页数:30
相关论文
共 50 条
  • [21] ESTIMATING THE CONDITIONAL VARIANCE OF A DESIGN CONSISTENT REGRESSION ESTIMATOR
    KOTT, PS
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 24 (03) : 287 - 296
  • [22] TESTING CONSTANCY OF CONDITIONAL VARIANCE IN HIGH DIMENSION
    Deng, Lu
    Zou, Changliang
    Wang, Zhaojun
    Chen, Xin
    [J]. STATISTICA SINICA, 2020, 30 (03) : 1633 - 1655
  • [24] Dimension estimation in sufficient dimension reduction: A unifying approach
    Bura, E.
    Yang, J.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (01) : 130 - 142
  • [25] Sufficient Dimension Reduction for Censored Regressions
    Lu, Wenbin
    Li, Lexin
    [J]. BIOMETRICS, 2011, 67 (02) : 513 - 523
  • [26] Conditional variance LMMSE estimator for a GARCH process clutter model
    Pablo Pascual, Juan
    von Ellenrieder, Nicolas
    Muravchik, Carlos H.
    [J]. 2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 309 - 312
  • [27] EFFICIENT ESTIMATION IN SUFFICIENT DIMENSION REDUCTION
    Ma, Yanyuan
    Zhu, Liping
    [J]. ANNALS OF STATISTICS, 2013, 41 (01): : 250 - 268
  • [28] Sufficient dimension reduction with missing predictors
    Li, Lexin
    Lu, Wenbin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 822 - 831
  • [29] A unified approach to sufficient dimension reduction
    Xue, Yuan
    Wang, Qin
    Yin, Xiangrong
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 197 : 168 - 179
  • [30] Sufficient dimension reduction for compositional data
    Tomassi, Diego
    Forzani, Liliana
    Duarte, Sabrina
    Pfeiffer, Ruth M.
    [J]. BIOSTATISTICS, 2021, 22 (04) : 687 - 705