Lidar measurements of airborne particulate matter

被引:2
|
作者
Li, GK [1 ]
Philbrick, R [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
关键词
lidar; optical extinction; particulate matter;
D O I
10.1117/12.466128
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Raman lidar techniques have been used in remote sensing to measure the aerosol optical extinction in the lower atmosphere, as well as water vapor, temperature and ozone profiles. Knowledge of aerosol optical properties. assumes special importance in the wake of studies strongly correlating airborne particulate matter with adverse health effects. Optical extinction depends upon the concentration, composition, and size distribution of the particulate matter. Optical extinction from lidar returns provide information on particle size and density. The influence of relative humidity upon the growth and size of aerosols, particularly the sulfate aerosols along the northeast US region, has been investigated using a Raman lidar during several field measurement campaigns. A particle size distribution model is being developed and verified based on the experimental results. Optical extinction. measurements from lidar in the NARSTO-NE-OPS program in Philadelphia PA, during summer of 1999 and 2001, have been analyzed and compared with other measurements such as PM sampling and particle size measurements.
引用
收藏
页码:94 / 104
页数:11
相关论文
共 50 条
  • [41] Composition, sources, and properties of airborne particulate matter
    Harrison, Roy M.
    EPIDEMIOLOGY, 2006, 17 (06) : S81 - S81
  • [42] Development of monitoring technology for airborne particulate matter
    Lee, YJ
    Kim, HT
    Lee, KW
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2001, 70 (1-2) : 3 - 20
  • [43] CHEMICAL AND MORPHOLOGICAL CHARACTERIZATION OF AIRBORNE PARTICULATE MATTER
    BALTENSPERGER, U
    JOURNAL OF AEROSOL SCIENCE, 1987, 18 (06) : 825 - 828
  • [44] Airborne Particulate Matter and Innate Immunity Activation
    Gangamma, S.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (20) : 10879 - 10880
  • [45] The Effect of Airborne Particulate Matter on Plant Metabolism
    Pavlikova, Daniela
    Pavlik, Milan
    Zemanova, Veronika
    Hnilicka, Frantisek
    SBORNIK Z 18 MEZINARODNI KONFERENCE ON RACIONALNI POUZITI HNOJIV, 2012, : 35 - 38
  • [46] Application of receptor models to airborne particulate matter
    Bruno, P.
    Caselli, M.
    de Gennaro, G.
    Ielpo, P.
    Daresta, B. E.
    Dambruoso, P. R.
    Paolillo, V.
    Placentino, C. M.
    Trizio, L.
    MICROCHEMICAL JOURNAL, 2008, 88 (02) : 121 - 129
  • [47] DETECTION OF AROMATIC PEROXIDES IN AIRBORNE PARTICULATE MATTER
    STARK, G
    STAUFF, J
    STAUB REINHALTUNG DER LUFT, 1986, 46 (06): : 289 - 291
  • [48] Development of Monitoring Technology for Airborne Particulate Matter
    Y. J. Lee
    H. T. Kim
    K. W. Lee
    Environmental Monitoring and Assessment, 2001, 70 : 3 - 20
  • [49] The Study of Airborne Particulate Matter in Dalnegorsk Town
    Kholodov, Aleksei S.
    Tarasenko, Irina A.
    Zinkova, Ekaterina A.
    Teodoro, Michele
    Docea, Anca Oana
    Calina, Daniela
    Tsatsakis, Aristidis
    Golokhvast, Kirill S.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (17)
  • [50] Interaction between Airborne Microorganisms and Particulate Matter
    Haas, D.
    Galler, H.
    Luxner, J.
    Zarfel, G.
    Buzina, W.
    Friedl, H.
    Grisold, A.
    Habib, J. -S. -M.
    Reinthaler, F. F.
    MYCOSES, 2014, 57 : 25 - 25