Time and Computation Efficient Malicious Android Application Detection Using Machine Learning Techniques

被引:0
|
作者
Saqlain, Sabbir Ahmed [1 ]
Bin Mahamud, Navid [1 ]
Paul, Mahit Kumar [1 ]
Sattar, A. H. M. Sarowar [1 ]
机构
[1] Rajshahi Univ Engn & Technol, Dept Comp Sci & Engn, Rajshahi, Bangladesh
关键词
Malware; Android; ML; PCA; Random Forest; Malicious Applications;
D O I
10.1109/icaee48663.2019.8975540
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Malware has become one of the major threats to information security in this rapid growth of internet applications. This has led the researchers to develop distinguished methods for detecting malware in this respect. To address the issue, machine learning techniques have proven itself efficient in detecting malware. But one of the major challenges is the reduction of attributes or components that are less important in malware detection process. Applying Principal Component Analysis (PCA) with other machine learning techniques, successful reduction of components is possible without any alternation in detection accuracy. In this paper, an approach based on PCA has been proposed which is time and computation efficient in detecting malware than the existing ADROIT approach that doesn't use PCA. Experimental results have also shown the best suited approach for further development in dynamic malware detection process.
引用
收藏
页码:536 / 540
页数:5
相关论文
共 50 条
  • [41] Android Ransomware Detection using Machine Learning Techniques: A Comparative Analysis on GPU and CPU
    Sharma, Shweta
    Krishna, C. Rama
    Kumar, Rakesh
    2020 21ST INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2020,
  • [42] Android Ransomware Detection Using Supervised Machine Learning Techniques Based on Traffic Analysis
    Albin Ahmed, Amnah
    Shaahid, Afrah
    Alnasser, Fatima
    Alfaddagh, Shahad
    Binagag, Shadha
    Alqahtani, Deemah
    SENSORS, 2024, 24 (01)
  • [43] Android malware detection using time-aware machine learning approach
    Alsobeh, Anas M. R.
    Gaber, Khalid
    Hammad, Mahmoud M.
    Nuser, Maryam
    Shatnawi, Amani
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12627 - 12648
  • [44] An Intelligent Detection of Malicious Intrusions in IoT Based on Machine Learning and Deep Learning Techniques
    Iftikhar, Saman
    Khan, Danish
    Al-Madani, Daniah
    Alheeti, Khattab M. Ali
    Fatima, Kiran
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2022, 30 (03) : 288 - 307
  • [45] A Review of Static Detection Methods for Android Malicious Application
    Pan J.
    Cui Z.
    Lin G.
    Chen X.
    Zheng L.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (08): : 1875 - 1894
  • [46] Malicious Android Application Detection Based on Composite Features
    Xiao, Jingxu
    Xu, Kaiyong
    Duan, Jialiang
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [47] Malicious application detection in android - A systematic literature review
    Sharma, Tejpal
    Rattan, Dhavleesh
    COMPUTER SCIENCE REVIEW, 2021, 40
  • [48] Malicious Application Detection and Classification System for Android Mobiles
    Malik, Sapna
    Khatter, Kiran
    INTERNATIONAL JOURNAL OF AMBIENT COMPUTING AND INTELLIGENCE, 2018, 9 (01) : 95 - 114
  • [49] A New Android Malicious Application Detection Method Using Feature Importance Score
    Xiao, Jing-xu
    Lu, Zi-cong
    Xu, Qi-han
    PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2018) / 2018 THE 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND MULTIMEDIA TECHNOLOGY (ICIMT 2018), 2018, : 145 - 150
  • [50] Android Malicious Application Detection Using Permission Vector and Network Traffic Analysis
    Kandukuru, Satish
    Sharma, R. M.
    2017 2ND INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2017, : 1126 - 1132