Variable neighborhood search for the cost constrained minimum label spanning tree and label constrained minimum spanning tree problems

被引:9
|
作者
Naji-Azimi, Zahra [2 ]
Salari, Majid [2 ]
Golden, Bruce [1 ]
Raghavan, S. [1 ]
Toth, Paolo [2 ]
机构
[1] Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA
[2] Univ Bologna, DEIS, I-40136 Bologna, Italy
关键词
Minimum spanning tree problem; Minimum label spanning tree problem; Heuristics; Mixed integer programming; Variable neighborhood search; Genetic algorithm;
D O I
10.1016/j.cor.2009.12.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given an undirected graph whose edges are labeled or colored, edge weights indicating the cost of an edge, and a positive budget B, the goal of the cost constrained minimum label spanning tree (CCMLST) problem is to find a spanning tree that uses the minimum number of labels while ensuring its cost does not exceed B. The label constrained minimum spanning tree (LCMST) problem is closely related to the CCMLST problem. Here, we are given a threshold K on the number of labels. The goal is to find a minimum weight spanning tree that uses at most K distinct labels. Both of these problems are motivated from the design of telecommunication networks and are known to be NP-complete [15]. In this paper, we present a variable neighborhood search (VNS) algorithm for the CCMLST problem. The VNS algorithm uses neighborhoods defined on the labels. We also adapt the VNS algorithm to the LCMST problem. We then test the VNS algorithm on existing data sets as well as a large-scale dataset based on TSPLIB [12] instances ranging in size from 500 to 1000 nodes. For the LCMST problem, we compare the VNS procedure to a genetic algorithm (GA) and two local search procedures suggested in [15]. For the CCMLST problem, the procedures suggested in [15] can be applied by means of a binary search procedure. Consequently, we compared our VNS algorithm to the GA and two local search procedures suggested in [15]. The overall results demonstrate that the proposed VNS algorithm is of high quality and computes solutions rapidly. On our test datasets, it obtains the optimal solution in all instances for which the optimal solution is known. Further, it significantly outperforms the GA and two local search procedures described in [15]. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1952 / 1964
页数:13
相关论文
共 50 条
  • [31] A polyhedral study of the diameter constrained minimum spanning tree problem
    Gouveia, Luis
    Leitner, Markus
    Ljubic, Ivana
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 285 (285) : 364 - 379
  • [32] A hybrid heuristic for the diameter constrained minimum spanning tree problem
    Lucena, Abilio
    Ribeiro, Celso C.
    Santos, Andrea C.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (03) : 363 - 381
  • [33] A new encoding for the degree constrained minimum spanning tree problem
    Soak, SM
    Corne, D
    Ahn, BH
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2004, 3213 : 952 - 958
  • [34] Computing a diameter-constrained minimum spanning tree in parallel
    Deo, Narsingh
    Abdalla, Ayman
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2000, 1767 : 17 - 31
  • [35] Heuristics for the strong generalized minimum label spanning tree problem
    Cerrone, Carmine
    D'Ambrosio, Ciriaco
    Raiconi, Andrea
    [J]. NETWORKS, 2019, 74 (02) : 148 - 160
  • [36] Fuzzy Degree-Constrained Minimum Spanning Tree problem
    Lu, Yiwen
    [J]. Proceedings of the Fifth International Conference on Information and Management Sciences, 2006, 5 : 578 - 584
  • [37] Modeling and solving the angular constrained minimum spanning tree problem
    da Cunha, Alexandre Salles
    Lucena, Abilio
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2019, 112
  • [38] Heuristic algorithm for degree-constrained minimum spanning tree
    Liao, Fei-Xiong
    Ma, Liang
    [J]. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 2007, 29 (02): : 142 - 144
  • [39] Formulations for the Weight-Constrained Minimum Spanning Tree Problem
    Requejo, Cristina
    Agra, Agostinho
    Cerveira, Adelaide
    Santos, Eulalia
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2166 - +
  • [40] An egalitarian solution to minimum cost spanning tree problems
    Emre Doğan
    İbrahim Barış Esmerok
    [J]. International Journal of Game Theory, 2024, 53 : 127 - 141