Phenomenological models for the generic van der waals equation of state and critical parameters

被引:21
|
作者
Rah, K
Eu, BC
机构
[1] McGill Univ, Dept Chem, Montreal, PQ H3A 2K6, Canada
[2] McGill Univ, Ctr Study Nonequilibrium & Nano Mat, Montreal, PQ H3A 2K6, Canada
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2003年 / 107卷 / 18期
关键词
D O I
10.1021/jp0218847
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, phenomenological models for the generic van der Waals equation of state are proposed for the subcritical regime of a simple fluid by assuming empirical forms for the generic van der Waals parameters A and B. The models that are assumed are tested against the critical parameters. It is shown that quadratic and cubic models for A and B are shown to give good critical parameters. The quadratic and cubic models are then employed to calculate critical isotherms of argon and methane to determine which model is superior. It is found that the quadratic model yields excellent critical isotherms in comparison with experimental data and is much superior to the cubic model in the experimental range of density. The model equation of state is also used to determine the spinodal curve, which is shown to be closely related to the nonanalytic behavior of A and B with respect to temperature.
引用
收藏
页码:4382 / 4391
页数:10
相关论文
共 50 条
  • [41] Augmented van der Waals equations of state: SAFT-VR versus Yukawa based van der Waals equation
    Nezbeda, Ivo
    Melnyk, Roman
    Trokhymchuk, Andrij
    FLUID PHASE EQUILIBRIA, 2011, 309 (02) : 174 - 178
  • [42] The equation of Van der Waals and thermodynamics
    Verschaffelt, JE
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1929, 188 : 1037 - 1039
  • [43] The variability of the quantity b in van der Waals equation of state, also in connection with the critical quantities II
    van Laar, JJ
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1911, 14 : 428 - 442
  • [44] EQUATION OF STATE OF QUANTUM GASES BEYOND THE VAN DER WAALS APPROXIMATION
    Bugaev, K. A.
    Ivanytskyi, A. I.
    Sagun, V. V.
    Nikonov, E. G.
    Zinovjev, G. M.
    UKRAINIAN JOURNAL OF PHYSICS, 2018, 63 (10): : 863 - 880
  • [45] COMMENTS CONCERNING A SIMPLE EQUATION OF STATE OF THE VAN DER WAALS FORM
    WONG, JO
    PRAUSNITZ, JM
    CHEMICAL ENGINEERING COMMUNICATIONS, 1985, 37 (1-6) : 41 - 53
  • [46] Limiting temperature of pion gas with the van der Waals equation of state
    Poberezhnyuk, R. V.
    Vovchenko, V.
    Anchishkin, D. V.
    Gorenstein, M. I.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2016, 43 (09)
  • [47] van der Waals Equation of State Revisited: Importance of the Dispersion Correction
    de Visser, Sam P.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (16): : 4709 - 4717
  • [48] Van der Waals equation of state with Fermi statistics for nuclear matter
    Vovchenko, V.
    Anchishkin, D. V.
    Gorenstein, M. I.
    PHYSICAL REVIEW C, 2015, 91 (06):
  • [49] Henry constants in polymer solutions with the Van der Waals equation of state
    Bithas, SG
    Kalospiros, NS
    Kontogeorgis, GM
    Tassios, D
    POLYMER ENGINEERING AND SCIENCE, 1996, 36 (02): : 254 - 261
  • [50] A van der Waals type equation of state for confined fluids in nanopores
    Vakili-Nezhaad, G. R.
    NANOTECHNOLOGY AND ITS APPLICATIONS, 2007, 929 : 3 - 5