THE GENERALIZED HUA'S INEQUALITY ON THE FOURTH LOO-KENG HUA DOMAIN AND AN APPLICATION

被引:0
|
作者
Huang, Cheng Shi [1 ]
Jiang, Zhi Jie [1 ]
机构
[1] Sichuan Univ Sci & Engn, Sch Math & Stat, Zigong 643000, Sichuan, Peoples R China
来源
关键词
Weighted composition operator; the fourth Loo-keng Hua domain; Bers-type space; boundedness; compactness; WEIGHTED COMPOSITION OPERATORS; BLOCH SPACE; ANALYTIC-FUNCTIONS; BERGMAN SPACES; H-INFINITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well-known that the fourth Loo-keng Hua domain is realized as the form HEIV = {xi(j) is an element of C-Nj, z is an element of R-IV(N) : Sigma(r)(j=1)vertical bar xi(j)vertical bar(2pj) < 1 + vertical bar zz(tau)vertical bar(2) - 2z (z) over bar (tau)}. The following generalized Hua's inequality is proved on HEIV: If (z, xi), (s, zeta) is an element of HEIV, then (1 + vertical bar zz(tau)vertical bar(2) - 2z (z) over bar (tau) - parallel to xi parallel to(2))(1 + vertical bar ss(tau)vertical bar(2) - 2s (s) over bar (tau) - parallel to zeta parallel to(2)) <= (vertical bar 1 + zz(tau)(s) over bar(s) over bar (tau) - 2z (s) over bar (tau)vertical bar - parallel to xi parallel to parallel to zeta parallel to)(2). As an application of this inequality, the boundedness and compactness of the weighted composition operators on Bers-type spaces of the fourth Loo-keng Hua domain are characterized.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] Operator extensions of Hua's inequality
    Moslehian, M. S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 1131 - 1139
  • [32] Bergman kernel on generalized exceptional Hua domain
    Yin, WP
    Zhao, ZG
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (03): : 321 - 334
  • [33] Bergman kernel on generalized exceptional Hua domain
    殷慰萍
    赵振刚
    ScienceinChina,SerA., 2002, Ser.A.2002 (03) : 321 - 334
  • [34] Bergman kernel on generalized exceptional hua domain
    Weiping Yin
    Zhengang Zhao
    Science in China Series A: Mathematics, 2002, 45 (3): : 321 - 334
  • [35] Bergman kernel on generalized exceptional Hua domain
    殷慰萍
    赵振刚
    Science China Mathematics, 2002, (03) : 321 - 334
  • [36] On some new generalizations of Hua's inequality
    Hong, G. Q.
    Li, P. T.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 62 - 75
  • [37] On some new generalizations of Hua’s inequality
    G. Q Hong
    P. T. Li
    Acta Mathematica Hungarica, 2020, 162 : 62 - 75
  • [38] Extremal problems on the generalized Hua domain of the first type
    Su, JB
    Yin, WP
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2006, 16 (04) : 352 - 358
  • [39] Extremal problems on the generalized Hua domain of the first type
    SU Jianbing and YIN Weiping Department of Mathematics
    Progress in Natural Science, 2006, (04) : 352 - 358
  • [40] GENERALIZATION OF HUA'S INEQUALITIES AND AN APPLICATION
    Su, Jianbing
    Miao, Xingxing
    Li, Huijuan
    Journal of Mathematical Inequalities, 2015, 9 (01): : 27 - 45