Study of Z scaling of runaway electron plateau final loss energy deposition into wall of DIII-D

被引:18
|
作者
Hollmann, E. M. [1 ]
Commaux, N. [2 ]
Eidietis, N. W. [3 ]
Lasnier, C. J. [4 ]
Rudakov, D. L. [1 ]
Shiraki, D. [2 ]
Cooper, C. [5 ]
Martin-Solis, J. R. [6 ]
Parks, P. B. [3 ]
Paz-Soldan, C. [3 ]
机构
[1] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA
[2] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
[3] Gen Atom Co, POB 85608, San Diego, CA USA
[4] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA
[5] Oak Ridge Associated Univ, POB 117, Oak Ridge, TN 37831 USA
[6] Univ Carlos III Madrid, Ave Univ 30, Madrid 28911, Spain
关键词
D O I
10.1063/1.4985086
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Controlled runaway electron (RE) plateau-wall strikes with different initial impurity levels are used to study the effect of background plasma ion charge Z (resistivity) on RE-wall loss dynamics. It is found that Joule heating (magnetic to kinetic energy conversion) during the final loss does not go up monotonically with increasing Z but peaks at intermediate Z similar to 6. Joule heating and overall time scales of the RE final loss are found to be reasonably well-described by a basic 0D coupled-circuit model, with only the loss time as a free parameter. This loss time is found to be fairly well correlated with the avalanche time, possibly suggesting that the RE final loss rate is limited by the avalanche rate. First attempts at measuring total energy deposition to the vessel walls by REs during the final loss are made. At higher plasma impurity levels Z > 5, energy deposition to the wall appears to be consistent with modeling, at least within the large uncertainties of the measurement. At low impurity levels Z < 5, however, local energy deposition appears around 5-20x less than expected, suggesting that the RE energy dissipation at low Z is not fully understood. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Runaway electron beam dynamics at low plasma density in DIII-D: energy distribution, current profile, and internal instability
    Lvovskiy, A.
    Paz-Soldan, C.
    Eidietis, N. W.
    Aleynikov, P.
    Austin, M. E.
    Dal Molin, A.
    Liu, Y. Q.
    Moyer, R. A.
    Nocente, M.
    Shiraki, D.
    Giacomelli, L.
    Heidbrink, W. W.
    Hollmann, E. M.
    Rigamonti, D.
    Spong, D. A.
    Tardocchi, M.
    NUCLEAR FUSION, 2020, 60 (05)
  • [22] The role of kinetic instabilities in formation of the runaway electron current after argon injection in DIII-D
    Lvovskiy, A.
    Paz-Soldan, C.
    Eidietis, N. W.
    Dal Molin, A.
    Du, X. D.
    Giacomelli, L.
    Herfindal, J. L.
    Hollmann, E. M.
    Martinelli, L.
    Moyer, R. A.
    Nocente, M.
    Rigamonti, D.
    Shiraki, D.
    Tardocchi, M.
    Thome, K. E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (12)
  • [23] Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D
    Shiraki, D.
    Commaux, N.
    Baylor, L. R.
    Cooper, C. M.
    Eidietis, N. W.
    Hollmann, E. M.
    Paz-Soldan, C.
    Combs, S. K.
    Meitner, S. J.
    NUCLEAR FUSION, 2018, 58 (05)
  • [24] Boundary condition effects on runaway electron mitigation coil modeling for the SPARC and DIII-D tokamaks
    Izzo, V. A.
    Battey, A.
    Tinguely, R. A.
    Sweeney, R.
    Hansen, C.
    NUCLEAR FUSION, 2024, 64 (06)
  • [25] Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D
    Hollmann, E. M.
    Austin, M. E.
    Boedo, J. A.
    Brooks, N. H.
    Commaux, N.
    Eidietis, N. W.
    Humphreys, D. A.
    Izzo, V. A.
    James, A. N.
    Jernigan, T. C.
    Loarte, A.
    Martin-Solis, J.
    Moyer, R. A.
    Munoz-Burgos, J. M.
    Parks, P. B.
    Rudakov, D. L.
    Strait, E. J.
    Tsui, C.
    Van Zeeland, M. A.
    Wesley, J. C.
    Yu, J. H.
    NUCLEAR FUSION, 2013, 53 (08)
  • [26] Current drive due to localized electron cyclotron power deposition in DIII-D
    Harvey, RW
    Lin-Liu, YR
    Sauter, O
    Smirnov, AP
    Luce, TC
    Prater, R
    RADIO FREQUENCY POWER IN PLASMAS, 1999, 485 : 253 - 256
  • [27] Characterizing Low-Z erosion and deposition in the DIII-D divertor using aluminum
    Chrobak, C. P.
    Doerner, R. P.
    Stangeby, P. C.
    Wampler, W. R.
    Rudakov, D. L.
    Wright, G. M.
    Abrams, T.
    Ding, R.
    Elder, J. D.
    Guterl, J.
    Guo, H. Y.
    Lasnier, C.
    Thomas, D. M.
    Leonard, A. W.
    Buchenauer, D. A.
    McLean, A. G.
    Watkins, J. G.
    Tynan, G. R.
    NUCLEAR MATERIALS AND ENERGY, 2017, 12 : 441 - 446
  • [28] Runaway electron plateau current profile reconstruction from synchrotron imaging and Ar-II line polarization angle measurements in DIII-D
    Marini, C.
    Hollmann, E. M.
    Tang, S. W.
    Herfindal, J. L.
    Shiraki, D.
    Wilcox, R. S.
    del-Castillo-Negrete, D.
    Yang, M.
    Eidietis, N.
    Hoppe, M.
    NUCLEAR FUSION, 2024, 64 (07)
  • [29] Electron energy transport inferences from modulated electron cyclotron heating in DIII-D
    Gentle, KW
    Austin, ME
    DeBoo, JC
    Luce, TC
    Petty, CC
    PHYSICS OF PLASMAS, 2006, 13 (01) : 1 - 8
  • [30] H-MODE ENERGY CONFINEMENT SCALING FROM THE DIII-D AND JET TOKAMAKS
    SCHISSEL, DP
    DEBOO, JC
    BURRELL, KH
    FERRON, JR
    GROEBNER, RJ
    STJOHN, H
    STAMBAUGH, RD
    TUBBING, BJD
    THOMSEN, K
    CORDEY, JG
    KEILHACKER, M
    STORK, D
    STOTT, PE
    TANGA, A
    NUCLEAR FUSION, 1991, 31 (01) : 73 - 81