Study of Z scaling of runaway electron plateau final loss energy deposition into wall of DIII-D

被引:18
|
作者
Hollmann, E. M. [1 ]
Commaux, N. [2 ]
Eidietis, N. W. [3 ]
Lasnier, C. J. [4 ]
Rudakov, D. L. [1 ]
Shiraki, D. [2 ]
Cooper, C. [5 ]
Martin-Solis, J. R. [6 ]
Parks, P. B. [3 ]
Paz-Soldan, C. [3 ]
机构
[1] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA
[2] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
[3] Gen Atom Co, POB 85608, San Diego, CA USA
[4] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA
[5] Oak Ridge Associated Univ, POB 117, Oak Ridge, TN 37831 USA
[6] Univ Carlos III Madrid, Ave Univ 30, Madrid 28911, Spain
关键词
D O I
10.1063/1.4985086
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Controlled runaway electron (RE) plateau-wall strikes with different initial impurity levels are used to study the effect of background plasma ion charge Z (resistivity) on RE-wall loss dynamics. It is found that Joule heating (magnetic to kinetic energy conversion) during the final loss does not go up monotonically with increasing Z but peaks at intermediate Z similar to 6. Joule heating and overall time scales of the RE final loss are found to be reasonably well-described by a basic 0D coupled-circuit model, with only the loss time as a free parameter. This loss time is found to be fairly well correlated with the avalanche time, possibly suggesting that the RE final loss rate is limited by the avalanche rate. First attempts at measuring total energy deposition to the vessel walls by REs during the final loss are made. At higher plasma impurity levels Z > 5, energy deposition to the wall appears to be consistent with modeling, at least within the large uncertainties of the measurement. At low impurity levels Z < 5, however, local energy deposition appears around 5-20x less than expected, suggesting that the RE energy dissipation at low Z is not fully understood. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Measurement of post-disruption runaway electron kinetic energy and pitch angle during final loss instability in DIII-D
    Hollmann, E. M.
    Marini, C.
    Rudakov, D. L.
    Martinez-Loran, E.
    Beidler, M.
    Herfindal, J. L.
    Shiraki, D.
    Liu, Y. Q.
    Bykov, I
    Lvovskiy, A.
    Lasnier, C.
    Ren, J.
    Ratynskaia, S.
    Rizzi, T.
    Paschalidis, K.
    Tolias, P.
    Kulachenko, A.
    Pitts, R. A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (03)
  • [2] An in situ runaway electron diagnostic for DIII-D
    Wurden, G. A.
    Oertel, J. A.
    Evans, T. E.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [3] Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D
    Hollmann, E. M.
    Parks, P. B.
    Commaux, N.
    Eidietis, N. W.
    Moyer, R. A.
    Shiraki, D.
    Austin, M. E.
    Lasnier, C. J.
    Paz-Soldan, C.
    Rudakov, D. L.
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [4] ELM energy scaling in DIII-D
    Leonard, AW
    Groebner, RJ
    Mahdavi, MA
    Osborne, TH
    Fenstermacher, ME
    Lasnier, CJ
    Petrie, TW
    PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (06) : 945 - 954
  • [5] Study of argon expulsion from the post-disruption runaway electron plateau following low-Z massive gas injection in DIII-D
    Hollmann, E. M.
    Bykov, I.
    Eidietis, N. W.
    Herfindal, J. L.
    Lvovskiy, A.
    Moyer, R. A.
    Parks, P. B.
    Paz-Soldan, C.
    Pigarov, A. Yu.
    Rudakov, D. L.
    Shiraki, D.
    Watkins, J.
    PHYSICS OF PLASMAS, 2020, 27 (04)
  • [6] Toroidal modeling of runaway electron loss due to 3-D fields in DIII-D and COMPASS
    Liu, Yueqiang
    Paz-Soldan, C.
    Macusova, E.
    Markovic, T.
    Ficker, O.
    Parks, P. B.
    Kim, C. C.
    Lao, L. L.
    Li, L.
    PHYSICS OF PLASMAS, 2020, 27 (10)
  • [7] Power deposition on the DIII-D inner wall limiter
    Stangeby, P. C.
    Tsui, C. K.
    Lasnier, C. J.
    Boedo, J. A.
    Elder, J. D.
    Kocan, M.
    Leonard, A. W.
    McLean, A. G.
    Pitts, R. A.
    Rudakov, D. L.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 389 - 392
  • [8] Study of argon assimilation into the post-disruption runaway electron plateau in DIII-D and comparison with a 1D diffusion model
    Hollmann, E. M.
    Eidietis, N. W.
    Herfindal, J. L.
    Parks, P. B.
    Pigarov, A. Y.
    Shiraki, D.
    Austin, M. E.
    Bardoczi, L.
    Baylor, L.
    Bykov, I
    Carlstrom, T. N.
    Kaplan, D.
    Lasnier, C. J.
    Lvovskiy, A.
    Moser, A.
    Moyer, R. A.
    Paz-Soldan, C.
    Rudakov, D. L.
    Samuell, C.
    Shafer, M.
    Van Zeeland, M.
    Welander, A.
    Wilcox, R.
    NUCLEAR FUSION, 2019, 59 (10)
  • [9] Spatially dependent modeling and simulation of runaway electron mitigation in DIII-D
    Beidler, M. T.
    del-Castillo-Negrete, D.
    Baylor, L. R.
    Shiraki, D.
    Spong, D. A.
    PHYSICS OF PLASMAS, 2020, 27 (11)
  • [10] Recent DIII-D advances in runaway electron measurement and model validation
    Paz-Soldan, C.
    Eidietis, N. W.
    Hollmann, E. M.
    Aleynikov, P.
    Carbajal, L.
    Heidbrink, W. W.
    Hoppe, M.
    Liu, C.
    Lvovskiy, A.
    Shiraki, D.
    Spong, D.
    Brennan, D. P.
    Cooper, C. M.
    del-Castillo-Negrete, D.
    Du, X.
    Embreus, O.
    Fulop, T.
    Herfindal, J.
    Moyer, R.
    Parks, P.
    Thome, K. E.
    NUCLEAR FUSION, 2019, 59 (06)