Almost Non-negative Scalar Curvature on Riemannian Manifolds Conformal to Tori

被引:7
|
作者
Allen, Brian [1 ]
机构
[1] Univ Hartford, Hartford, CT 06117 USA
关键词
Scalar curvature; Conformal Riemannian manifolds; Intrinsic flat convergence; Geometric stability; Tori; Yamabe problem; EQUATIONS;
D O I
10.1007/s12220-021-00677-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we reduce the geometric stability conjecture for the scalar torus rigidity theorem to the conformal case via the Yamabe problem. Then we are able to prove the case where a sequence of Riemannian manifolds is conformal to a uniformly controlled sequence of flat tori and satisfies the geometric stability conjecture. We are also able to handle the case where a sequence of Riemannian manifolds is conformal to a sequence of constant negative scalar curvature Riemannian manifolds which converge to a flat torus in C-1. The full conjecture from the conformal perspective is also discussed as a possible approach to resolving the conjecture.
引用
收藏
页码:11190 / 11213
页数:24
相关论文
共 50 条
  • [21] Scalar curvature and conformal deformations of noncompact Riemannian manifolds
    Andrea Ratto
    Marco Rigoli
    Laurent Veron
    [J]. Mathematische Zeitschrift, 1997, 225 : 395 - 426
  • [22] Sampling and Optimization on Convex Sets in Riemannian Manifolds of Non-Negative Curvature
    Goyal, Navin
    Shetty, Abhishek
    [J]. CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [23] SCALAR CURVATURE AND CONFORMAL DEFORMATIONS OF NONCOMPACT RIEMANNIAN-MANIFOLDS
    RATTO, A
    RIGOLI, M
    VERON, L
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (07): : 665 - 670
  • [24] INSTABILITY OF ELLIPTIC EQUATIONS ON COMPACT RIEMANNIAN MANIFOLDS WITH NON-NEGATIVE RICCI CURVATURE
    Nascimento, Arnaldo S.
    Goncalves, Alexandre C.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [25] Torus manifolds and non-negative curvature
    Wiemeler, Michael
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 : 667 - 692
  • [26] The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations
    Rovenski, Vladimir
    Mikes, Josef
    Stepanov, Sergey
    [J]. MATHEMATICS, 2021, 9 (12)
  • [28] Homotopy invariants and almost non-negative curvature
    Bazzoni, Giovanni
    Lupton, Gregory
    Oprea, John
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (02) : 1117 - 1140
  • [29] Homotopy invariants and almost non-negative curvature
    Giovanni Bazzoni
    Gregory Lupton
    John Oprea
    [J]. Mathematische Zeitschrift, 2022, 300 : 1117 - 1140
  • [30] Non-negative versus positive scalar curvature
    Schick, Thomas
    Wraith, David J.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 146 : 218 - 232