Dirichlet process HMM mixture models with application to music analysis

被引:0
|
作者
Qi, Yuting [1 ]
Paisley, John William [1 ]
Carin, Lawrence [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
关键词
Dirichlet process; HMM mixture; music; variational Bayes;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A hidden Markov mixture model is developed using a Dirichlet process (DP) prior, to represent the statistics of sequential data for which a single hidden Markov model (HMM) may not be sufficient. The DP prior has an intrinsic clustering property that encourages parameter sharing, naturally revealing the proper number of mixture components. The evaluation of posterior distributions for all model parameters is achieved via a variational Bayes formulation. We focus on exploring music similarities as an important application, highlighting the effectiveness of the HMM mixture model. Experimental results are presented from classical music clips.
引用
收藏
页码:465 / +
页数:2
相关论文
共 50 条
  • [41] Variable selection in clustering via Dirichlet process mixture models
    Kim, Sinae
    Tadesse, Mahlet G.
    Vannucci, Marina
    BIOMETRIKA, 2006, 93 (04) : 877 - 893
  • [42] Kernel Analysis Based on Dirichlet Processes Mixture Models
    Tian, Jinkai
    Yan, Peifeng
    Huang, Da
    ENTROPY, 2019, 21 (09)
  • [43] Comparative Analysis of Improved Dirichlet Process Mixture Model
    Wu, Lili
    Fam, Pei Shan
    Ali, Majid Khan Majahar
    Tian, Ying
    Ismail, Mohd. Tahir
    Jamaludin, Siti Zulaikha Mohd
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2023, 19 (06): : 1099 - 1118
  • [44] Dirichlet Process Gaussian Mixture Models for Real-Time Monitoring and Their Application to Chemical Mechanical Planarization
    Liu, Jia
    Beyca, Omer F.
    Rao, Prahalad K.
    Kong, Zhenyu
    Bukkapatnam, Satish T. S.
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2017, 14 (01) : 208 - 221
  • [45] Quantum annealing for Dirichlet process mixture models with applications to network clustering
    Sato, Issei
    Tanaka, Shu
    Kurihara, Kenichi
    Miyashita, Seiji
    Nakagawa, Hiroshi
    NEUROCOMPUTING, 2013, 121 : 523 - 531
  • [46] Performance Comparison of Julia Distributed Implementations of Dirichlet Process Mixture Models
    Huang, Ruizhu
    Xu, Weijia
    Wang, Yinzhi
    Liverani, Silvia
    Stapleton, Ann E.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 3350 - 3354
  • [47] Partially collapsed parallel Gibbs sampler for Dirichlet process mixture models
    Yerebakan, Halid Ziya
    Dundar, Murat
    PATTERN RECOGNITION LETTERS, 2017, 90 : 22 - 27
  • [48] Variance Matrix Priors for Dirichlet Process Mixture Models With Gaussian Kernels
    Jing, Wei
    Papathomas, Michail
    Liverani, Silvia
    INTERNATIONAL STATISTICAL REVIEW, 2024,
  • [49] A DIRICHLET PROCESS MIXTURE OF HIDDEN MARKOV MODELS FOR PROTEIN STRUCTURE PREDICTION
    Lennox, Kristin P.
    Dahl, David B.
    Vannucci, Marina
    Day, Ryan
    Tsai, Jerry W.
    ANNALS OF APPLIED STATISTICS, 2010, 4 (02): : 916 - 942
  • [50] Dirichlet process mixture models for non-stationary data streams
    Casado, Ioar
    Perez, Aritz
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 873 - 878