Why prefer double robust estimators in causal inference?

被引:78
|
作者
Neugebauer, R [1 ]
van der Laan, M [1 ]
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
关键词
causal inference; marginal structural model; double robust estimator; inverse probability of treatment weighted estimator; G-computation estimator; censored data; robustness;
D O I
10.1016/j.jspi.2004.06.060
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In point treatment studies, causal parameters defined by marginal structural models can be estimated under the assumption of no unobserved confounders. Three estimators can be used: the G-computation, inverse probability of treatment weighted (IPTW) or double robust (DR) estimator. The consistency properties of the IPTW and DR estimators are known under an assumption on the treatment mechanism that we name the "Experimental Treatment Assignment" (ETA) assumption. We first propose to extend the consistency property of the DR estimator by redefining the DR estimating function when the ETA assumption is violated. With simulations emulating point treatment studies, we then illustrate the practical consequences of the redefinition of the DR, estimator: IPTW estimates are biased at finite sample size when the ETA assumption is practically or theoretically violated, whereas the finite sample bias for the DR estimates is negligible under correct model specifications. While DR estimators are known to be more robust than IPTW estimators, this result implies that they are also more robust than G-computation estimators in point treatment studies. These results motivated the development of a methodology to construct such redefined DR estimators for a general missing data structure. We conclude with an illustration of the rationale of this general methodology with causal inference in point treatment studies. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:405 / 426
页数:22
相关论文
共 50 条
  • [1] Implementing double-robust estimators of causal effects
    Emsley, Richard
    Lunt, Mark
    Pickles, Andrew
    Dunn, Graham
    [J]. STATA JOURNAL, 2008, 8 (03): : 334 - 353
  • [2] Robust inference with GMM estimators
    Ronchetti, E
    Trojani, F
    [J]. JOURNAL OF ECONOMETRICS, 2001, 101 (01) : 37 - 69
  • [3] Why and How to Prefer a Causal Account of Parenthood
    Porter, Lindsey
    [J]. JOURNAL OF SOCIAL PHILOSOPHY, 2014, 45 (02) : 182 - 202
  • [4] Improved double-robust estimation in missing data and causal inference models
    Rotnitzky, Andrea
    Lei, Quanhong
    Sued, Mariela
    Robins, James M.
    [J]. BIOMETRIKA, 2012, 99 (02) : 439 - 456
  • [5] Why Process Matters for Causal Inference
    Glynn, Adam N.
    Quinn, Kevin M.
    [J]. POLITICAL ANALYSIS, 2011, 19 (03) : 273 - 286
  • [6] Statistical Inference on the Estimators of the Adherer Average Causal Effect
    Zhang, Ying
    Fu, Haoda
    Ruberg, Stephen J.
    Qu, Yongming
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2022, 14 (03): : 392 - 395
  • [7] Detection of unfaithfulness and robust causal inference
    Zhang, Jiji
    Spirtes, Peter
    [J]. MINDS AND MACHINES, 2008, 18 (02) : 239 - 271
  • [8] Detection of Unfaithfulness and Robust Causal Inference
    Jiji Zhang
    Peter Spirtes
    [J]. Minds and Machines, 2008, 18 : 239 - 271
  • [9] The how and why of Bayesian nonparametric causal inference
    Linero, Antonio R.
    Antonelli, Joseph L.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2023, 15 (01):
  • [10] Implementation of tripartite estimands using adherence causal estimators under the causal inference framework
    Qu, Yongming
    Luo, Junxiang
    Ruberg, Stephen J.
    [J]. PHARMACEUTICAL STATISTICS, 2021, 20 (01) : 55 - 67