Spectral sections and higher Atiyah-Patodi-Singer index theory on Galois coverings

被引:28
|
作者
Leichtnam, E
Piazza, P
机构
[1] Ecole Normale Super, DMI, F-75230 Paris, France
[2] Univ Rome La Sapienza, Ist G Castelnuovo, I-00185 Rome, Italy
关键词
D O I
10.1007/s000390050047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider Gamma --> (M) over tilde --> M, a Galois covering with boundary and (D) over tilde a Gamma-invariant generalized Dirac operator on (M) over tilde. We assume that the group Gamma is of polynomial growth with respect to a word metric. By employing the notion of noncommutative spectral section associated to the boundary operator <(D)over tilde (0)> and the b-calculus on Galois coverings with boundary, we develop a higher Atiyah-Patodi-Singer index theory. Our main theorem extends to such Gamma-Galois coverings with boundary the higher index theorem of Connes-Moscovici.
引用
收藏
页码:17 / 58
页数:42
相关论文
共 50 条