Linearizing generalized kahler geometry

被引:14
|
作者
Lindstrom, Ulf [1 ]
Rocek, Martin
von Unge, Rikard
Zabzine, Maxim
机构
[1] Uppsala Univ, Dept Theoret Phys, Box 803, SE-75108 Uppsala, Sweden
[2] Univ Helsinki, HIP, FIN-00014 Helsinki, Finland
[3] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
[4] Masaryk Univ, Inst Theoret Phys, CS-61137 Brno, Czech Republic
来源
基金
美国国家科学基金会;
关键词
superspaces; sigma models; differential and algebraic geometry; extended supersymmetry;
D O I
10.1088/1126-6708/2007/04/061
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The geometry of the target space of an N=(2,2) supersymmetry sigma-mold carries a generalized Kahler structure. There always exists a real function, the generalized Kahler potential K, that encodes all the relevant local differential geometry data: the metric, the B-field, etc. Generically this data is given by nonlinear functions of the second derivatives of K. We show that, at least locally, the nonlinearity on any generalized Kahler manifold can be explained as arising from a quotient of a space without this nonlinearity.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Generalized Kahler Geometry
    Gualtieri, Marco
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (01) : 297 - 331
  • [2] Formality in generalized Kahler geometry
    Cavalcanti, Gil R.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) : 1119 - 1125
  • [3] Symmetries in generalized Kahler geometry
    Lin, Yi
    Tolman, Susan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) : 199 - 222
  • [4] Generalized Kahler geometry and gerbes
    Hull, Chris M.
    Lindstrom, Ulf
    Rocek, Martin
    von Unge, Rikard
    Zabzine, Maxim
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):
  • [5] Deformation classes in generalized Kahler geometry
    Gibson, Matthew
    Streets, Jeffrey
    [J]. COMPLEX MANIFOLDS, 2020, 7 (01): : 241 - 256
  • [6] Generalized Kahler Geometry, Gerbes, and all that
    Zabzine, Maxim
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2009, 90 (1-3) : 373 - 382
  • [7] Generalized Kahler geometry and the pluriclosed flow
    Streets, Jeffrey
    Tian, Gang
    [J]. NUCLEAR PHYSICS B, 2012, 858 (02) : 366 - 376
  • [8] Special Kahler manifolds and generalized geometry
    Nannicini, Antonella
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (02) : 230 - 238
  • [9] Pseudo-Hyperkahler Geometry and Generalized Kahler Geometry
    Goteman, Malin
    Lindstrom, Ulf
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2011, 95 (03) : 211 - 222
  • [10] Generalized coKahler geometry and an application to generalized Kahler structures
    Gomez, Ralph R.
    Talvacchia, Janet
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 493 - 503