Generalized Kahler Geometry, Gerbes, and all that

被引:4
|
作者
Zabzine, Maxim [1 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden
关键词
generalized Kahler geometry; potential; gerbes; SIGMA-MODELS; SUPERSYMMETRY; MANIFOLDS;
D O I
10.1007/s11005-009-0355-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review recent advances in generalized Kahler geometry while stressing the use of Poisson and symplectic geometry. The derivation of a generalized Kahler potential is sketched and relevant global issues are discussed.
引用
收藏
页码:373 / 382
页数:10
相关论文
共 50 条
  • [1] Generalized Kahler geometry and gerbes
    Hull, Chris M.
    Lindstrom, Ulf
    Rocek, Martin
    von Unge, Rikard
    Zabzine, Maxim
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):
  • [2] Generalized Kähler Geometry, Gerbes, and all that
    Maxim Zabzine
    [J]. Letters in Mathematical Physics, 2009, 90 : 373 - 382
  • [3] Generalized Kahler Geometry
    Gualtieri, Marco
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (01) : 297 - 331
  • [4] Linearizing generalized kahler geometry
    Lindstrom, Ulf
    Rocek, Martin
    von Unge, Rikard
    Zabzine, Maxim
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [5] Formality in generalized Kahler geometry
    Cavalcanti, Gil R.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) : 1119 - 1125
  • [6] Symmetries in generalized Kahler geometry
    Lin, Yi
    Tolman, Susan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) : 199 - 222
  • [7] Deformation classes in generalized Kahler geometry
    Gibson, Matthew
    Streets, Jeffrey
    [J]. COMPLEX MANIFOLDS, 2020, 7 (01): : 241 - 256
  • [8] Generalized Kahler geometry and the pluriclosed flow
    Streets, Jeffrey
    Tian, Gang
    [J]. NUCLEAR PHYSICS B, 2012, 858 (02) : 366 - 376
  • [9] Special Kahler manifolds and generalized geometry
    Nannicini, Antonella
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (02) : 230 - 238
  • [10] Pseudo-Hyperkahler Geometry and Generalized Kahler Geometry
    Goteman, Malin
    Lindstrom, Ulf
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2011, 95 (03) : 211 - 222