SPACELIKE S-WILLMORE SPHERES IN LORENTZIAN SPACE FORMS

被引:3
|
作者
Wang, Peng [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
关键词
spacelike S-Willmore surfaces; spacelike S-Willmore sphere; stationary surfaces; duality theorem; SURFACES; GEOMETRY; DUALITY;
D O I
10.2140/pjm.2010.246.495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that spacelike S-Willmore surfaces are the only spacelike Willmore surfaces with a duality in Lorentzian space forms. We obtain a classification of S-Willmore spheres in Lorentzian conformal space forms. Such a sphere must be congruent to either a complete spacelike stationary ((H) over right arrow = 0) surface in R-1(n); a super-Willmore sphere in S2m+2; or a polar transform of a (j - 1)-isotropic complete spacelike stationary ((H) over right arrow - 0) surface in R-1(2j+2). We also show that all Willmore spheres in Q(1)(4) are conformal to a complete spacelike stationary surface in R-1(4).
引用
下载
收藏
页码:495 / 510
页数:16
相关论文
共 50 条
  • [21] WILLMORE SURFACES IN SPHERES VIA LOOP GROUPS III: ON MINIMAL SURFACES IN SPACE FORMS
    Wang, Peng
    TOHOKU MATHEMATICAL JOURNAL, 2017, 69 (01) : 141 - 160
  • [22] Complete spacelike CMC hypersurfaces in a Lorentzian space form
    Yang, Biaogui
    Liu, Ximin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (3-4): : 513 - 525
  • [23] WILLMORE SURFACES AND F-WILLMORE SURFACES IN SPACE FORMS
    Chang, Yu-Chung
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (01): : 109 - 131
  • [24] CURVATURE ESTIMATES OF A SPACELIKE GRAPH IN A LORENTZIAN PRODUCT SPACE
    Kim, Daehwan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (02): : 499 - 518
  • [25] s-Degenerate curves in Lorentzian space forms
    Ferrández, A
    Giménez, A
    Lucas, P
    JOURNAL OF GEOMETRY AND PHYSICS, 2003, 45 (1-2) : 116 - 129
  • [26] Isometric Spacelike Immersions of Space Forms in Indefinite Space Forms
    李海中
    吴岚
    Tsinghua Science and Technology, 2001, (04) : 344 - 346
  • [27] Complete CMC spacelike hypersurfaces immersed in a Lorentzian product space
    Cícero P. Aquino
    Henrique F. de Lima
    Eraldo A. Lima
    Archiv der Mathematik, 2015, 104 : 577 - 587
  • [28] On the behavior at infinity of complete spacelike hypersurfaces in a Lorentzian space form
    Marco A. L. Velásquez
    Henrique F. de Lima
    Ary V. F. Leite
    Journal of Geometry, 2024, 115 (3)
  • [29] Complete CMC spacelike hypersurfaces immersed in a Lorentzian product space
    Aquino, Cicero P.
    de Lima, Henrique F.
    Lima, Eraldo A., Jr.
    ARCHIV DER MATHEMATIK, 2015, 104 (06) : 577 - 587
  • [30] Spacelike Mobius Hypersurfaces in Four Dimensional Lorentzian Space Form
    Lin, Yan Bin
    Lu, Ying
    Wang, Chang Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (04) : 519 - 536