SPACELIKE S-WILLMORE SPHERES IN LORENTZIAN SPACE FORMS

被引:3
|
作者
Wang, Peng [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
关键词
spacelike S-Willmore surfaces; spacelike S-Willmore sphere; stationary surfaces; duality theorem; SURFACES; GEOMETRY; DUALITY;
D O I
10.2140/pjm.2010.246.495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that spacelike S-Willmore surfaces are the only spacelike Willmore surfaces with a duality in Lorentzian space forms. We obtain a classification of S-Willmore spheres in Lorentzian conformal space forms. Such a sphere must be congruent to either a complete spacelike stationary ((H) over right arrow = 0) surface in R-1(n); a super-Willmore sphere in S2m+2; or a polar transform of a (j - 1)-isotropic complete spacelike stationary ((H) over right arrow - 0) surface in R-1(2j+2). We also show that all Willmore spheres in Q(1)(4) are conformal to a complete spacelike stationary surface in R-1(4).
引用
下载
收藏
页码:495 / 510
页数:16
相关论文
共 50 条
  • [1] Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms
    Ma Xiang
    Wang Peng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (09): : 1561 - 1576
  • [2] Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms
    Xiang Ma
    Peng Wang
    Science in China Series A: Mathematics, 2008, 51 : 1561 - 1576
  • [3] Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms
    MA Xiang & WANG Peng School of Mathematical Sciences
    Science China Mathematics, 2008, (09) : 1561 - 1576
  • [4] Spacelike Dupin hypersurfaces in Lorentzian space forms
    Li, Tongzhu
    Nie, Changxiong
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2018, 70 (02) : 463 - 480
  • [5] Willmore spacelike submanifolds in a Lorentzian space form Npn+p(c)
    Shu, Shichang
    Chen, Junfeng
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (02) : 301 - 319
  • [6] ON THE QUADRIC CMC SPACELIKE HYPERSURFACES IN LORENTZIAN SPACE FORMS
    Aquino, Cicero P.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    COLLOQUIUM MATHEMATICUM, 2016, 145 (01) : 89 - 98
  • [7] A Note on Spacelike Submanifolds Through Light Cones in Lorentzian Space Forms
    Canovas, Veronica L.
    de la Fuente, Daniel
    Palomo, Francisco J.
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [8] PARA-BLASCHKE ISOPARAMETRIC SPACELIKE HYPERSURFACES IN LORENTZIAN SPACE FORMS
    Ji, Xiu
    Li, Tongzhu
    Sun, Huafei
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (03): : 685 - 706
  • [9] On spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms
    Wu, Bing Ye
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (01) : 244 - 251
  • [10] A Note on Spacelike Submanifolds Through Light Cones in Lorentzian Space Forms
    Verónica L. Cánovas
    Daniel de la Fuente
    Francisco J. Palomo
    Results in Mathematics, 2021, 76