Dealing with missing values and outliers in principal component analysis

被引:99
|
作者
Stanimirova, I. [1 ]
Daszykowski, M. [1 ]
Walczak, B. [1 ]
机构
[1] Silesian Univ, Inst Chem, Dept Chemometr, PL-40006 Katowice, Poland
关键词
expectation maximization approach; robust PCA; missing elements;
D O I
10.1016/j.talanta.2006.10.011
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
An efficient methodology for dealing with missing values and outlying observations simultaneously in principal component analysis (PCA) is proposed. The concept described in the paper consists of using a robust technique to obtain robust principal components combined with the expectation maximization approach to process data with missing elements. It is shown that the proposed strategy works well for highly contaminated data containing different amounts of missing elements. The authors come to this conclusion on the basis of the results obtained from a simulation study and from analysis of a real environmental data set. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:172 / 178
页数:7
相关论文
共 50 条
  • [1] Missing values in principal component analysis
    Grung, B
    Manne, R
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 42 (1-2) : 125 - 139
  • [2] A family of principal component analyses for dealing with outliers
    Iglesias, J. Eugenio
    de Bruijne, Marleen
    Loog, Marco
    Lauze, Francois
    Nielsen, Mads
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 178 - +
  • [3] Principal component analysis for data containing outliers and missing elements
    Serneels, Sven
    Verdonck, Tim
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1712 - 1727
  • [4] Dynamic principal component analysis with missing values
    Kwon, Junhyeon
    Oh, Hee-Seok
    Lim, Yaeji
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (11) : 1957 - 1969
  • [5] Handling missing values in Principal Component Analysis
    Josse, Julie
    Husson, Francois
    Pages, Jerome
    [J]. JOURNAL OF THE SFDS, 2009, 150 (02): : 28 - 51
  • [6] Principal component analysis with interval imputed missing values
    Zuccolotto, Paola
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2012, 96 (01) : 1 - 23
  • [7] Principal component analysis with interval imputed missing values
    Paola Zuccolotto
    [J]. AStA Advances in Statistical Analysis, 2012, 96 : 1 - 23
  • [8] Principal Component Analysis of Process Datasets with Missing Values
    Severson, Kristen A.
    Molaro, Mark C.
    Braatz, Richard D.
    [J]. PROCESSES, 2017, 5 (03)
  • [9] Robust Principal Component Analysis of Data with Missing Values
    Karkkainen, Tommi
    Saarela, Mirka
    [J]. MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2015, 2015, 9166 : 140 - 154
  • [10] Principal component analysis with missing values: a comparative survey of methods
    Stéphane Dray
    Julie Josse
    [J]. Plant Ecology, 2015, 216 : 657 - 667