Missing values in principal component analysis

被引:95
|
作者
Grung, B [1 ]
Manne, R [1 ]
机构
[1] Univ Bergen, Dept Chem, N-5007 Bergen, Norway
关键词
principal component analysis; missing elements; regression approach; imputation;
D O I
10.1016/S0169-7439(98)00031-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Calculation schemes for principal component analysis are considered for the case when some matrix elements are missing. Iterative solutions are proposed-either a set of multilinear regression problems or as singular-value decomposition problems with iterative imputation of missing values. If mean values are subtracted from the data matrix, they should also be included in the iteration scheme. Test calculations using Matlab show that the regression approach is somewhat faster than the imputation approach. The results with a substantial amount of missing data are different and superior to those obtained with the naive NIPALS algorithm in common use in chemometrics. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 139
页数:15
相关论文
共 50 条
  • [1] Dynamic principal component analysis with missing values
    Kwon, Junhyeon
    Oh, Hee-Seok
    Lim, Yaeji
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (11) : 1957 - 1969
  • [2] Handling missing values in Principal Component Analysis
    Josse, Julie
    Husson, Francois
    Pages, Jerome
    [J]. JOURNAL OF THE SFDS, 2009, 150 (02): : 28 - 51
  • [3] Principal component analysis with interval imputed missing values
    Zuccolotto, Paola
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2012, 96 (01) : 1 - 23
  • [4] Dealing with missing values and outliers in principal component analysis
    Stanimirova, I.
    Daszykowski, M.
    Walczak, B.
    [J]. TALANTA, 2007, 72 (01) : 172 - 178
  • [5] Principal component analysis with interval imputed missing values
    Paola Zuccolotto
    [J]. AStA Advances in Statistical Analysis, 2012, 96 : 1 - 23
  • [6] Principal Component Analysis of Process Datasets with Missing Values
    Severson, Kristen A.
    Molaro, Mark C.
    Braatz, Richard D.
    [J]. PROCESSES, 2017, 5 (03)
  • [7] Robust Principal Component Analysis of Data with Missing Values
    Karkkainen, Tommi
    Saarela, Mirka
    [J]. MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2015, 2015, 9166 : 140 - 154
  • [8] Principal component analysis with missing values: a comparative survey of methods
    Stéphane Dray
    Julie Josse
    [J]. Plant Ecology, 2015, 216 : 657 - 667
  • [9] Practical Approaches to Principal Component Analysis in the Presence of Missing Values
    Ilin, Alexander
    Raiko, Tapani
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 1957 - 2000
  • [10] Principal component analysis with missing values: a comparative survey of methods
    Dray, Stephane
    Josse, Julie
    [J]. PLANT ECOLOGY, 2015, 216 (05) : 657 - 667