Differential kinetic equations for a Rayleigh gas with inelastic collisions

被引:2
|
作者
Ferrari, L
Carbognani, A
机构
[1] Univ Parma, Dipartimento Fis, I-43100 Parma, Italy
[2] Ist Nazl Fis Mat, Unita Parma, Parma, Italy
关键词
Rayleigh gas; inelastic collisions; generalized Boltzmann equation; approximate collision operator; approximate kinetic equations;
D O I
10.1016/S0378-4371(97)00556-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from the collision integral of the appropriate generalized Boltzmann equation (Waldmann-Trubenbacher equation), a differential collision operator for a Rayleigh gas with inelastic collisions, i.e. for heavy (atomic) particles dilutely dispersed in a light molecular background gas, is obtained. The procedure is based on the assumption that the heavy particles are not too far from the thermal equilibrium with the background gas, and leads to an approximate operator which is correct up to (and including) the first-order terms in the ratio between the light-particle mass and the sum of the masses of a light particle and of a heavy particle. The obtained operator reduces to the usual Fokker-Planck collision operator when only elastic collisions are considered. All the steps of the procedure are briefly discussed and the use of the new operator in approximate (differential) kinetic equations appropriate to some possible physical situations is examined. Finally, the rather abstract kinetic equation (of the Fokker-Planck type) previously obtained by Mazo is led to its explicit final form and criticized. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:452 / 468
页数:17
相关论文
共 50 条