Adverse space weather is one of the principal threats to modern human technology. Solar coronal mass ejections, large solar flares, and high-speed solar wind streams often lead to sequences of damaging disturbances within the Earth's magnetosphere, in the atmosphere, and even on the Earth's surface. Powerful and long-lasting geomagnetic storms can develop following solar disturbances and enhancements of the highly relativistic electron populations throughout the outer terrestrial radiation zone can also result. High-energy protons and heavier ions arriving in near-earth space - or trapped in the magnetosphere and having clearest effect in the South Atlantic Anomaly (SAA) - can damage satellite solar power panels, confuse optical trackers, and deposit harmful charges into sensitive electronic components. Recent international space science programs have made a concerted effort to study activity on the Sun, the propagation of energy bursts from the Sun to near-Earth space, energy coupling into the magnetosphere, and its redistribution and deposition in the upper and middle atmosphere. Extreme solar, geomagnetic and solar wind conditions can be observed by a large array of international satellites and ground-based sensors. Many types of space weather-related problems have been identified in recent years. This chapter presents examples of space weather-induced anomalies and failures and discusses community efforts to propose technical and operational solutions to space weather problems now and in the future.