Analysis of transient multiexponential signals using cepstral deconvolution

被引:3
|
作者
Jibia, Abdussamad U. [1 ]
Salami, Momoh-Jimoh E. [1 ]
Khalifa, Othman O. [1 ]
Aibinu, A. M. [1 ]
机构
[1] Int Islamic Univ Malaysia, Kuala Lumpur 50728, Malaysia
关键词
Multiexponential; Homomorphic deconvolution; Cepstrum; Lifter; Fluorescence;
D O I
10.1016/j.acha.2009.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and test a new method of multiexponential transient signal analysis. The method based on cepstral deconvolution is fast and computationally inexpensive. The multiexponential signal is initially converted to a deconvolution model using Gardners' transformation after which the proposed method is used to deconvolve the data. Simulation and experimental results indicate that this method is good for determining the number of components but performs poorly in accurately estimating the decay rates. Influence of noise is not considered in this paper. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:88 / 96
页数:9
相关论文
共 50 条
  • [31] Analysis of multicomponent transient signals using MUSIC superresolution technique
    Jibia, Abdussamad U.
    Salami, Momoh-Jimoh E.
    Khalifa, Othman O.
    2008 INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING, VOLS 1-3, 2008, : 104 - 108
  • [32] Deconvolution of the transient photocurrent signals: application to the study of the density of states of a BTO crystal
    Longeaud, C.
    Main, C.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (13)
  • [33] Identification of engine cylinder pressure from vibration signals by cepstral analysis
    Huazhong Ligong Daxue Xuebao/Journal Huazhong (Central China) University of Science and Technology, 1998, 26 (06): : 79 - 81
  • [34] Periodicity estimation in synthesized phonation signals using cepstral rahmonic peaks
    Murphy, Peter J.
    SPEECH COMMUNICATION, 2006, 48 (12) : 1704 - 1713
  • [35] Modeling of forced expired volume signals with multiexponential functions
    Steltner, H
    Vogel, M
    Timmer, J
    Sorichter, S
    Guttmann, J
    PROCEEDINGS OF THE 22ND ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4, 2000, 22 : 638 - 641
  • [36] Blind deconvolution of ultrasonic signals using high-order spectral analysis and wavelets
    Herrera, RH
    Moreno, E
    Calas, H
    Orozco, R
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2005, 3773 : 663 - 670
  • [37] Deconvolution of ultrasonic signals using a convolutional neural network
    Chapon, Arthur
    Pereira, Daniel
    Toews, Matthew
    Belanger, Pierre
    ULTRASONICS, 2021, 111
  • [38] BLIND DECONVOLUTION USING SIGNAL RECONSTRUCTION FROM PARTIAL HIGHER-ORDER CEPSTRAL INFORMATION
    PETROPULU, AP
    NIKIAS, CL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (06) : 2088 - 2095
  • [39] Blind Deconvolution of EEG Signals Using the Stochastic Calculus
    Abutaleb, A.
    Fawzy, Aya
    Sayed, Khaled
    2012 CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2012, : 175 - 178
  • [40] A constructive deconvolution procedure of bandpass signals by homomorphic analysis
    Marenco, AL
    Madisetti, VK
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 1592 - 1596