Entropy along convex shapes, random tilings and shifts of finite type

被引:10
|
作者
Balister, P [1 ]
Bollobás, B [1 ]
Quas, A [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
D O I
10.1215/ijm/1258130984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A well-known formula for the topological entropy of a symbolic system is h(top)(X) = lim(n-->infinity) logN(Lambda(n))/\Lambda(n)\, where Lambda(n) is the box of side n in Z(d) and N(Lambda) is the number of. configurations of the system on the finite subset Lambda of Z(d). We investigate the convergence of the above limit for sequences of regions other than Lambda(n) and show in particular that if Xi(n) is any sequence of finite 'convex' sets in Z(d) whose inradii tend to infinity, then the sequence logN(Xi(n))/\Xi(n)\ converges to h(top) (X). We apply this to give a concrete proof of a 'strong Variational Principle', that is, the result that for certain higher dimensional systems the topological entropy of the system is the supremum of the measure-theoretic entropies taken over the set of all invariant measures with the Bernoulli property.
引用
收藏
页码:781 / 795
页数:15
相关论文
共 50 条
  • [31] An invariant of finite group actions on shifts of finite type
    Silver, DS
    Williams, SG
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1985 - 1996
  • [32] Recurrence rates for shifts of finite type
    Allen, Demi
    Baker, Simon
    Barany, Balazs
    ADVANCES IN MATHEMATICS, 2025, 460
  • [33] On the Irreducibility of Certain Shifts of Finite Type
    Kobayashi, Tetsuya
    Manada, Akiko
    Ota, Takahiro
    Morita, Hiroyoshi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (12) : 2415 - 2421
  • [34] Binary factors of shifts of finite type
    Putnam, Ian F. F.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (03) : 888 - 932
  • [35] Shifts of finite type and Fibonacci Harps
    Crannell, Annalisa
    May, Stephen
    Hilbert, Lindsay
    APPLIED MATHEMATICS LETTERS, 2007, 20 (02) : 138 - 141
  • [36] The Rohlin property for shifts of finite type
    Holton, CG
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 229 (02) : 277 - 299
  • [37] Perturbations of multidimensional shifts of finite type
    Pavlov, Ronnie
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 : 483 - 526
  • [38] Tree-shifts of finite type
    Aubrun, Nathalie
    Beal, Marie-Pierre
    THEORETICAL COMPUTER SCIENCE, 2012, 459 : 16 - 25
  • [39] On linear shifts of finite type and their endomorphisms
    Ceccherini-Silberstein, Tullio
    Coornaert, Michel
    Phung, Xuan Kien
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (06)
  • [40] Weak equivalence for shifts of finite type
    Barth, Joseph
    Dykstra, Andrew
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (04): : 495 - 506