Entropy along convex shapes, random tilings and shifts of finite type

被引:10
|
作者
Balister, P [1 ]
Bollobás, B [1 ]
Quas, A [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
D O I
10.1215/ijm/1258130984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A well-known formula for the topological entropy of a symbolic system is h(top)(X) = lim(n-->infinity) logN(Lambda(n))/\Lambda(n)\, where Lambda(n) is the box of side n in Z(d) and N(Lambda) is the number of. configurations of the system on the finite subset Lambda of Z(d). We investigate the convergence of the above limit for sequences of regions other than Lambda(n) and show in particular that if Xi(n) is any sequence of finite 'convex' sets in Z(d) whose inradii tend to infinity, then the sequence logN(Xi(n))/\Xi(n)\ converges to h(top) (X). We apply this to give a concrete proof of a 'strong Variational Principle', that is, the result that for certain higher dimensional systems the topological entropy of the system is the supremum of the measure-theoretic entropies taken over the set of all invariant measures with the Bernoulli property.
引用
收藏
页码:781 / 795
页数:15
相关论文
共 50 条
  • [1] SHIFTS OF FINITE TYPE AND RANDOM SUBSTITUTIONS
    Gohlke, Philipp
    Rust, Dan
    Spindeler, Timo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (09) : 5085 - 5103
  • [2] Shifts of finite type with nearly full entropy
    Pavlov, Ronnie
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 108 : 103 - 132
  • [3] RANDOM Zd-SHIFTS OF FINITE TYPE
    Mcgoff, Kevin
    Pavlov, Ronnie
    JOURNAL OF MODERN DYNAMICS, 2016, 10 : 287 - 330
  • [4] Tree-shifts: the entropy of tree-shifts of finite type
    Ban, Jung-Chao
    Chang, Chih-Hung
    NONLINEARITY, 2017, 30 (07) : 2785 - 2804
  • [5] Characterization for entropy of shifts of finite type on Cayley trees
    Ban, Jung-Chao
    Chang, Chih-Hung
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (07):
  • [6] Entropy dimension of shifts of finite type on free groups
    Ban, Jung-Chao
    Chang, Chih-Hung
    AIMS MATHEMATICS, 2020, 5 (05): : 5121 - 5139
  • [7] Projectional Entropy in Higher Dimensional Shifts of Finite Type
    Johnson, Aimee
    Kass, Steve
    Madden, Kathleen
    COMPLEX SYSTEMS, 2007, 17 (03): : 243 - 257
  • [8] Boundary conditions, entropy and the signature of random tilings
    Joseph, D
    Baake, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (21): : 6709 - 6716
  • [9] Entropy and boundary conditions in random rhombus tilings
    Destainville, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (29): : 6123 - 6139
  • [10] Finite edge-to-edge tilings by convex polygons
    Blind, R
    Shephard, GC
    MATHEMATIKA, 2001, 48 (95-96) : 25 - 50