Remarks on the nonuniversality of Boltzmann-Gibbs statistical mechanics

被引:2
|
作者
Tsallis, C [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil
关键词
D O I
10.1142/S0218348X03001987
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
How general are Boltzmann-Gibbs statistical mechanics and standard Thermodynamics? What classes of systems have thermostatistical properties, in particular equilibrium properties, that are correctly described by these formalisms? The answer is far from trivial. It is, however, clear today that these relevant and popular formalisms are not universal, this is to say that they have a domain of validity that it would be important to define precisely. A few remarks on these questions are herein presented, in particular in relation to nonextensive statistical mechanics, introduced a decade ago with the aim to cover at least some (but most probably not all) of the natural systems that are out of this domain of validity.
引用
收藏
页码:319 / 326
页数:8
相关论文
共 50 条
  • [41] Symmetric deformed binomial distributions: An analytical example where the Boltzmann-Gibbs entropy is not extensive
    Bergeron, H.
    Curado, E. M. F.
    Gazeau, J. P.
    Rodrigues, Ligia M. C. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [42] The isothermal Boltzmann-Gibbs entropy reduction affects survival of the fruit fly Drosophila melanogaster
    Gruss, Iwona
    Twardowski, Jacek
    Samsel-Czekala, Malgorzata
    Beznosiuk, Jaroslaw
    Wandzel, Czeslaw
    Twardowska, Kamila
    Wiglusz, Rafal J.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [43] Deterministic generation of the Boltzmann-Gibbs distribution and the free energy calculation from the Tsallis distribution
    Fukada, I
    Nakamura, H
    CHEMICAL PHYSICS LETTERS, 2003, 382 (3-4) : 367 - 373
  • [44] Boltzmann-Gibbs thermal equilibrium distribution for classical systems and Newton law: a computational discussion
    Baldovin, F.
    Moyano, L. G.
    Tsallis, C.
    EUROPEAN PHYSICAL JOURNAL B, 2006, 52 (01): : 113 - 117
  • [45] From Non-Normalizable Boltzmann-Gibbs Statistics to Infinite-Ergodic Theory
    Aghion, Erez
    Kessler, David A.
    Barkai, Eli
    PHYSICAL REVIEW LETTERS, 2019, 122 (01)
  • [46] Boltzmann-Gibbs thermal equilibrium distribution for classical systems and Newton law: a computational discussion
    F. Baldovin
    L. G. Moyano
    C. Tsallis
    The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 52 : 113 - 117
  • [47] BOLTZMANN AND STATISTICAL-MECHANICS
    MEYENN, KV
    ARBOR-CIENCIA PENSAMIENTO Y CULTURA, 1994, 148 (581) : 51 - 79
  • [48] Ludwig Boltzmann and statistical mechanics
    Baracca, A
    ISIS, 1999, 90 (02) : 373 - 374
  • [49] Gibbs, Einstein and the foundations of statistical mechanics
    Navarro, L
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1998, 53 (02) : 147 - 180
  • [50] GIBBS INEQUALITY IN QUANTUM STATISTICAL MECHANICS
    BRUCH, LW
    FALK, H
    PHYSICAL REVIEW A, 1970, 2 (04): : 1598 - &