microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis

被引:176
|
作者
Ouimet, Mireille [1 ]
Ediriweera, Hasini [1 ]
Afonso, Milessa Silva [1 ]
Ramkhelawon, Bhama [2 ]
Singaravelu, Ragunath [3 ,4 ]
Liao, Xianghai [5 ,6 ,7 ]
Bandler, Rachel C. [1 ]
Rahman, Karishma [1 ]
Fisher, Edward A. [1 ]
Rayner, Katey J. [1 ,3 ]
Pezacki, John P. [3 ,4 ]
Tabas, Ira [5 ,6 ,7 ]
Moore, Kathryn J. [8 ]
机构
[1] NYU, Med Ctr, Marc & Ruti Bell Vasc Biol & Dis Program, Leon H Charney Div Cardiol,Dept Med, New York, NY 10003 USA
[2] NYU, Med Ctr, Div Vasc Surg, Dept Surg, New York, NY 10003 USA
[3] Univ Ottawa, Dept Biochem Microbiol & Immunol, Ottawa, ON, Canada
[4] Natl Res Council Canada, Ottawa, ON, Canada
[5] Columbia Univ, Dept Med, New York, NY USA
[6] Columbia Univ, Dept Pathol, New York, NY USA
[7] Columbia Univ, Dept Cell Biol, New York, NY USA
[8] Univ Ottawa, Heart Inst, Ottawa, ON, Canada
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
atherosclerosis; autophagy; hydrolysis; lipid droplets; macrophages; CHOLESTEROL EFFLUX; LIPOPROTEIN METABOLISM; FOAM CELLS; MIR-33; PHAGOCYTOSIS; INHIBITION; EXPRESSION; REPRESSION; REGRESSION; CLEARANCE;
D O I
10.1161/ATVBAHA.116.308916
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective-Defective autophagy in macrophages leads to pathological processes that contribute to atherosclerosis, including impaired cholesterol metabolism and defective efferocytosis. Autophagy promotes the degradation of cytoplasmic components in lysosomes and plays a key role in the catabolism of stored lipids to maintain cellular homeostasis. microRNA-33 (miR-33) is a post-transcriptional regulator of genes involved in cholesterol homeostasis, yet the complete mechanisms by which miR-33 controls lipid metabolism are unknown. We investigated whether miR-33 targeting of autophagy contributes to its regulation of cholesterol homeostasis and atherogenesis. Approach and Results-Using coherent anti-Stokes Raman scattering microscopy, we show that miR-33 drives lipid droplet accumulation in macrophages, suggesting decreased lipolysis. Inhibition of neutral and lysosomal hydrolysis pathways revealed that miR-33 reduced cholesterol mobilization by a lysosomal-dependent mechanism, implicating repression of autophagy. Indeed, we show that miR-33 targets key autophagy regulators and effectors in macrophages to reduce lipid droplet catabolism, an essential process to generate free cholesterol for efflux. Notably, miR-33 regulation of autophagy lies upstream of its known effects on ABCA1 (ATP-binding cassette transporter A1)-dependent cholesterol efflux, as miR-33 inhibitors fail to increase efflux upon genetic or chemical inhibition of autophagy. Furthermore, we find that miR-33 inhibits apoptotic cell clearance via an autophagy-dependent mechanism. Macrophages treated with anti-miR-33 show increased efferocytosis, lysosomal biogenesis, and degradation of apoptotic material. Finally, we show that treating atherosclerotic Ldlr(-/-) mice with anti-miR-33 restores defective autophagy in macrophage foam cells and plaques and promotes apoptotic cell clearance to reduce plaque necrosis. Conclusions-Collectively, these data provide insight into the mechanisms by which miR-33 regulates cellular cholesterol homeostasis and atherosclerosis.
引用
收藏
页码:1058 / +
页数:14
相关论文
共 50 条
  • [21] MicroRNA-24 Regulates Macrophage Behavior and Retards Atherosclerosis
    Di Gregoli, Karina
    Jenkins, Nicholas
    Salter, Rebecca
    White, Stephen
    Newby, Andrew C.
    Johnson, Jason L.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2014, 34 (09) : 1990 - 2000
  • [22] microRNA-33 deficiency in macrophages enhances autophagy, improves mitochondrial homeostasis, and protects against lung fibrosis
    Ahangari, Farida
    Price, Nathan L.
    Malik, Shipra
    Chioccioli, Maurizio
    Barnthaler, Thomas
    Adams, Taylor S.
    Kim, Jooyoung
    Pradeep, Sai Pallavi
    Ding, Shuizi
    Cosmos Jr., Carlos
    Rose, Kadi-Ann S.
    McDonough, John E.
    Aurelien, Nachelle R.
    Ibarra, Gabriel
    Omote, Norihito
    Schupp, Jonas C.
    DeIuliis, Giuseppe
    Nunez, Julian A. Villalba
    Sharma, Lokesh
    Ryu, Changwan
    Dela Cruz, Charles S.
    Liu, Xinran
    Prasse, Antje
    Rosas, Ivan
    Bahal, Raman
    Fernandez-Hernando, Carlos
    Kaminski, Naftali
    JCI INSIGHT, 2023, 8 (04)
  • [23] MicroRNA-33 Inhibition: A Potential Adjunct to Statin Therapy?
    Sahebkar, Amirhossein
    Maffioli, Pamela
    Banach, Maciej
    Derosa, Giuseppe
    CURRENT VASCULAR PHARMACOLOGY, 2016, 14 (04) : 321 - 322
  • [24] Macrophage Autophagy in Atherosclerosis
    Maiuri, Maria Chiara
    Grassia, Gianluca
    Platt, Andrew M.
    Carnuccio, Rosa
    Ialenti, Armando
    Maffia, Pasquale
    MEDIATORS OF INFLAMMATION, 2013, 2013
  • [25] MicroRNA-33 suppresses CCL2 expression in chondrocytes
    Wei, Meng
    Xie, Qingyun
    Zhu, Jun
    Wang, Tao
    Zhang, Fan
    Cheng, Yue
    Guo, Dongyang
    Wang, Ying
    Mo, Liweng
    Wang, Shuai
    BIOSCIENCE REPORTS, 2016, 36
  • [26] Abnormal Levels of Expression of Plasma MicroRNA-33 in Patients With Psoriasis
    Garcia-Rodriguez, S.
    Arias-Santiago, S.
    Orgaz-Molina, J.
    Magro-Checa, C.
    Valenzuela, I.
    Navarro, P.
    Naranjo-Sintes, R.
    Sancho, J.
    Zubiaur, M.
    ACTAS DERMO-SIFILIOGRAFICAS, 2014, 105 (05): : 497 - 503
  • [27] MicroRNA-33 Inhibits Adaptive Thermogenesis and Adipose Tissue Beiging
    Afonso, Milessa Silva
    Verma, Narendra
    van Solingen, Coen
    Cyr, Yannick
    Sharma, Monika
    Perie, Luce
    Corr, Emma M.
    Schlegel, Martin
    Shanley, Lianne C.
    Peled, Daniel
    Yoo, Jenny Y.
    Schmidt, Ann Marie
    Mueller, Elisabetta
    Moore, Kathryn J.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2021, 41 (04) : 1360 - 1373
  • [28] Pivotal role of microRNA-33 in metabolic syndrome: A systematic review
    Gharipour, Mojgan
    Sadeghi, Masoumeh
    ARYA ATHEROSCLEROSIS, 2013, 9 (06) : 372 - 376
  • [29] microRNA-33 controls hunger signaling in hypothalamic AgRP neurons
    Price, Nathan L.
    Fernandez-Tussy, Pablo
    Varela, Luis
    Cardelo, Magdalena P.
    Shanabrough, Marya
    Aryal, Binod
    de Cabo, Rafael
    Suarez, Yajaira
    Horvath, Tamas L.
    Fernandez-Hernando, Carlos
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [30] MicroRNA-33/33* inhibit the activation of MAVS through AMPK in antiviral innate immunity
    Danhui Liu
    Qinchun Tan
    Jie Zhu
    Yuanyuan Zhang
    Yue Xue
    Yinjing Song
    Yang Liu
    Qingqing Wang
    Lihua Lai
    Cellular & Molecular Immunology, 2021, 18 : 1450 - 1462