Neonatal hypoxic preconditioning involves vascular endothelial growth factor

被引:58
|
作者
Laudenbach, Vincent
Fontaine, Romain H.
Medja, Fadia
Carmeliet, Peter
Hicklin, Daniel J.
Gallego, Jorge
Leroux, Philippe
Marret, Stephane
Gressens, Pierre
机构
[1] Univ Rouen, INSERM, AVENIR Res Grp, Biomed Res Inst,IFRMP23, F-76183 Rouen, France
[2] Univ Rouen Hosp, Dept Neonatal Pediat & Intens Care, F-76183 Rouen, France
[3] Katholieke Univ Leuven VIB, Ctr Transgene Technol & Gene Therapy, B-3000 Louvain, Belgium
[4] Robert Debre Teaching Hosp, INSERM, U676, F-76019 Paris, France
[5] Imcline Syst Inc, New York, NY 10014 USA
[6] Univ Paris 07, Denis Diderot Sch Med, IFR02, F-75221 Paris 05, France
[7] Robert Debre Teaching Hosp, APHP, F-75019 Paris, France
关键词
neonatal excitotoxicity; NMDA receptors; lbotenate; AMPA-kainate receptors; S-willardiine;
D O I
10.1016/j.nbd.2006.12.020
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We studied hypoxic preconditioning (HxP) in the murine developing brain, focusing on the role for vascular endothelial growth factor (VEGF). Newborn mice were used as follows: (1) HxP (or normoxia) then intracerebral (i.e.) NMDA or AMPA-kainate agonist; (2) HxP then intraperitoneal (i.p.) anti-VEGFR2/Flk1 or anti-VEGFR1/Flt1 monoclonal blocking antibody (mAb) then i.e. NMDA/AMPA-kainate agonist; (3) i.p. VEGF then i.e. NMDA/AMPA-kainate agonist; and(4) in mutants lacking the hypoxia-responsive element (HRE) of the VEGF-A gene (VEGT(partial derivative/partial derivative)) and their wild-type littermates (VEGF(+/+)), HxP followed by i.e. NMDA agonist. HxP reduced the size of NMDA-related cortical and AMPA-kainate-related cortical and white matter excitotoxic lesions. Anti-VEGFR2/Flk1 mAb prevented HxP-induced neuroprotection. VEGF produced dose-dependent reduction in cortical lesions. HxP did not prevent, but instead exacerbated, brain lesions in VEGF(partial derivative/partial derivative) mutants. Thus, exogenous as well as endogenous VEGF reduces excitotoxic brain lesions in the developing mouse. The VEGF/VEGFR2/Flk1 pathway is involved in the neuroprotective response to HxP. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [41] Vascular endothelial growth factor
    Wirostko, Barbara M.
    OPHTHALMOLOGY, 2007, 114 (10) : 1954 - 1955
  • [42] Vascular endothelial growth factor
    Plate, KH
    Warnke, PC
    JOURNAL OF NEURO-ONCOLOGY, 1997, 35 (03) : 365 - 372
  • [43] Vascular endothelial growth factor
    Ferrara, N
    EUROPEAN JOURNAL OF CANCER, 1996, 32A (14) : 2413 - 2422
  • [44] Vascular endothelial growth factor
    Karl H. Plate
    Peter C. Warnke
    Journal of Neuro-Oncology, 1997, 35 (3) : 363 - 370
  • [45] The Vascular endothelial growth factor
    Zouggari, Yasmine
    SANG THROMBOSE VAISSEAUX, 2009, 21 (9-10): : 494 - 496
  • [46] Vascular endothelial growth factor
    Marti, HH
    MOLECULAR AND CELLULAR BIOLOGY OF NEUROPROTECTION IN THE CNS, 2002, 513 : 375 - 394
  • [47] Vascular Endothelial Growth Factor
    Ferrara, Napoleone
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2009, 29 (06) : 789 - 791
  • [48] Placental growth factor expression is reversed by anti-vascular endothelial growth factor therapy under hypoxic conditions
    Zhou, Ai-Yi
    Bai, Yu-Jing
    Zhao, Min
    Yu, Wen-Zhen
    Huang, Lv-Zhen
    Li, Xiao-Xin
    WORLD JOURNAL OF PEDIATRICS, 2014, 10 (03) : 262 - 270
  • [49] Vascular endothelial growth factor regulation of endothelial nitric oxide synthase phosphorylation is involved in isoflurane cardiac preconditioning
    Liu, Yanan
    Paterson, Mark
    Baumgardt, Shelley L.
    Irwin, Michael G.
    Xia, Zhengyuan
    Bosnjak, Zeljko J.
    Ge, Zhi-Dong
    CARDIOVASCULAR RESEARCH, 2019, 115 (01) : 168 - 178
  • [50] The Effect of Interval Hypoxic Hypoxia on the Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor Concentrations in the Peripheral Blood
    S. A. El'chaninova
    N. A. Korenyak
    L. I. Pavlovskaya
    I. V. Smagina
    V. V. Makarenko
    Human Physiology, 2004, 30 (6) : 705 - 707