Unmanned Aerial Vehicle Operating Mode Classification Using Deep Residual Learning Feature Extraction

被引:13
|
作者
Swinney, Carolyn J. [1 ,2 ]
Woods, John C. [1 ]
机构
[1] Univ Essex, Comp Sci & Elect Engn Dept, Colchester CO4 3SQ, Essex, England
[2] Royal Air Force Waddington, Air & Space Warfare Ctr, Lincoln LN5 9NB, England
关键词
unmanned aerial vehicles; UAV detection; RF spectrum analysis; machine learning classification; deep learning; convolutional neural network; transfer learning; signal analysis;
D O I
10.3390/aerospace8030079
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Unmanned Aerial Vehicles (UAVs) undoubtedly pose many security challenges. We need only look to the December 2018 Gatwick Airport incident for an example of the disruption UAVs can cause. In total, 1000 flights were grounded for 36 h over the Christmas period which was estimated to cost over 50 million pounds. In this paper, we introduce a novel approach which considers UAV detection as an imagery classification problem. We consider signal representations Power Spectral Density (PSD); Spectrogram, Histogram and raw IQ constellation as graphical images presented to a deep Convolution Neural Network (CNN) ResNet50 for feature extraction. Pre-trained on ImageNet, transfer learning is utilised to mitigate the requirement for a large signal dataset. We evaluate performance through machine learning classifier Logistic Regression. Three popular UAVs are classified in different modes; switched on; hovering; flying; flying with video; and no UAV present, creating a total of 10 classes. Our results, validated with 5-fold cross validation and an independent dataset, show PSD representation to produce over 91% accuracy for 10 classifications. Our paper treats UAV detection as an imagery classification problem by presenting signal representations as images to a ResNet50, utilising the benefits of transfer learning and outperforming previous work in the field.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Earth image classification design using unmanned Aerial vehicle
    Prasetio, Barlian Henryranu
    Supianto, Ahmad Afif
    Setiawan, Gembong Edhi
    Setiawan, Budi Darma
    Cholissodin, Imam
    Akbar, Sabriansyah R.
    Telkomnika (Telecommunication Computing Electronics and Control), 2015, 13 (03) : 1021 - 1028
  • [22] Extraction and Mapping of Cropland Parcels in Typical Regions of Southern China Using Unmanned Aerial Vehicle Multispectral Images and Deep Learning
    Wu, Shikun
    Su, Yingyue
    Lu, Xiaojun
    Xu, Han
    Kang, Shanggui
    Zhang, Boyu
    Hu, Yueming
    Liu, Luo
    DRONES, 2023, 7 (05)
  • [23] A deep learning approach to cardiovascular disease classification using empirical mode decomposition for ECG feature extraction
    Li, Ya
    Luo, Jing-hao
    Dai, Qing-yun
    Eshraghian, Jason K.
    Ling, Bingo Wing-Kuen
    Zheng, Ci-yan
    Wang, Xiao-li
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [24] Maximizing feature detection in aerial unmanned aerial vehicle datasets
    Byrne, Jonathan
    Laefer, Debra F.
    O'Keeffe, Evan
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [25] Ground vehicle detection and classification by an unmanned aerial vehicle
    Montanari, Raphael
    Tozadore, Daniel C.
    Fraccaroli, Eduardo S.
    Romero, Roseli A. F.
    2015 12TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 2015 3RD BRAZILIAN SYMPOSIUM ON ROBOTICS (LARS-SBR), 2015, : 253 - 257
  • [26] Flood Detection Based on Unmanned Aerial Vehicle System and Deep Learning
    Yang, Kaixin
    Zhang, Sujie
    Yang, Xinran
    Wu, Nan
    COMPLEXITY, 2022, 2022
  • [27] Application of Deep Learning Based Object Detection on Unmanned Aerial Vehicle
    Ipek, Burak
    Akpinar, Mustafa
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2020, : 74 - 78
  • [28] Deep Learning for Feature Extraction in Remote Sensing: A Case-Study of Aerial Scene Classification
    Petrovska, Biserka
    Zdravevski, Eftim
    Lameski, Petre
    Corizzo, Roberto
    Stajduhar, Ivan
    Lerga, Jonatan
    SENSORS, 2020, 20 (14) : 1 - 22
  • [29] Automatic Segmentation of Mauritia flexuosa in Unmanned Aerial Vehicle (UAV) Imagery Using Deep Learning
    Morales, Giorgio
    Kemper, Guillermo
    Sevillano, Grace
    Arteaga, Daniel
    Ortega, Ivan
    Telles, Joel
    FORESTS, 2018, 9 (12):
  • [30] The Effect of Real-World Interference on CNN Feature Extraction and Machine Learning Classification of Unmanned Aerial Systems
    Swinney, Carolyn J.
    Woods, John C.
    AEROSPACE, 2021, 8 (07)