Unmanned Aerial Vehicle Operating Mode Classification Using Deep Residual Learning Feature Extraction

被引:13
|
作者
Swinney, Carolyn J. [1 ,2 ]
Woods, John C. [1 ]
机构
[1] Univ Essex, Comp Sci & Elect Engn Dept, Colchester CO4 3SQ, Essex, England
[2] Royal Air Force Waddington, Air & Space Warfare Ctr, Lincoln LN5 9NB, England
关键词
unmanned aerial vehicles; UAV detection; RF spectrum analysis; machine learning classification; deep learning; convolutional neural network; transfer learning; signal analysis;
D O I
10.3390/aerospace8030079
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Unmanned Aerial Vehicles (UAVs) undoubtedly pose many security challenges. We need only look to the December 2018 Gatwick Airport incident for an example of the disruption UAVs can cause. In total, 1000 flights were grounded for 36 h over the Christmas period which was estimated to cost over 50 million pounds. In this paper, we introduce a novel approach which considers UAV detection as an imagery classification problem. We consider signal representations Power Spectral Density (PSD); Spectrogram, Histogram and raw IQ constellation as graphical images presented to a deep Convolution Neural Network (CNN) ResNet50 for feature extraction. Pre-trained on ImageNet, transfer learning is utilised to mitigate the requirement for a large signal dataset. We evaluate performance through machine learning classifier Logistic Regression. Three popular UAVs are classified in different modes; switched on; hovering; flying; flying with video; and no UAV present, creating a total of 10 classes. Our results, validated with 5-fold cross validation and an independent dataset, show PSD representation to produce over 91% accuracy for 10 classifications. Our paper treats UAV detection as an imagery classification problem by presenting signal representations as images to a ResNet50, utilising the benefits of transfer learning and outperforming previous work in the field.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Feature Extraction using Unmanned Aerial Vehicle
    Ajith, G.
    Kumar, Naveen T. S.
    Bharadwaj, Narasimha C.
    Nag, Sriharsha T. S.
    Gururaj, C.
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 459 - 464
  • [2] Unmanned Aerial Vehicle Classification and Detection Based on Deep Transfer Learning
    Meng, Wei
    Tia, Meng
    2020 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND HUMAN-COMPUTER INTERACTION (ICHCI 2020), 2020, : 280 - 285
  • [3] Unmanned Aerial Vehicle Detection and Identification Using Deep Learning
    Liu, Hongjie
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 514 - 518
  • [4] Sparse Autoencoder Based Feature Learning for Unmanned Aerial Vehicle Landforms Image Classification
    Liu, Fang
    Lu, Lixia
    Huang, Guangwei
    2017 IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) AND IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS (RAM), 2017, : 1 - 6
  • [5] Surface sediment classification using a deep learning model and unmanned aerial vehicle data of tidal flats
    Kim, Kye-Lim
    Woo, Han-Jun
    Jou, Hyeong-Tae
    Jung, Hahn Chul
    Lee, Seung-Kuk
    Ryu, Joo-Hyung
    MARINE POLLUTION BULLETIN, 2024, 198
  • [6] Tree species classification using deep learning and RGB optical images obtained by an unmanned aerial vehicle
    Zhang, Chen
    Xia, Kai
    Feng, Hailin
    Yang, Yinhui
    Du, Xiaochen
    JOURNAL OF FORESTRY RESEARCH, 2021, 32 (05) : 1879 - 1888
  • [7] Tree species classification using deep learning and RGB optical images obtained by an unmanned aerial vehicle
    Chen Zhang
    Kai Xia
    Hailin Feng
    Yinhui Yang
    Xiaochen Du
    Journal of Forestry Research, 2021, 32 (05) : 1879 - 1888
  • [8] Tree species classification using deep learning and RGB optical images obtained by an unmanned aerial vehicle
    Chen Zhang
    Kai Xia
    Hailin Feng
    Yinhui Yang
    Xiaochen Du
    Journal of Forestry Research, 2021, 32 : 1879 - 1888
  • [9] A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors
    Guo, Dingfei
    Zhong, Maiying
    Ji, Hongquan
    Liu, Yang
    Yang, Rui
    NEUROCOMPUTING, 2018, 319 : 155 - 163
  • [10] Object Detection and Trajectory Prediction of Unmanned Aerial Vehicle Using Deep Learning
    Aote, Shailendra S.
    Panpaliya, Samiksha
    Hedaoo, Nilanshu
    Mane, Shantanu
    Pathak, Sagar
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 2, SMARTCOM 2024, 2024, 946 : 225 - 235