Transport across thin membranes: Effective solute flux jump

被引:5
|
作者
Zampogna, Giuseppe Antonio [1 ]
Ledda, Pier Giuseppe [1 ,2 ]
Gallaire, Francois [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Fluid Mech & Instabil, CH-1015 Lausanne, Switzerland
[2] Univ Cagliari, DICAAR, I-09123 Cagliari, Italy
基金
瑞士国家科学基金会;
关键词
BOUNDARY-CONDITIONS; POROUS-MEDIUM; DIFFUSION; FLOW; ROUGH; PERMEABILITY; AQUAPORINS; CONVECTION; INTERFACE;
D O I
10.1063/5.0101621
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A model to describe the transport across membranes of chemical species dissolved in an incompressible flow is developed via homogenization. The asymptotic matching between the microscopic and macroscopic solute concentration fields leads to a solute flux jump across the membrane, quantified through the solution of diffusion problems at the microscale. The predictive model, written in a closed form, covers a wide range of membrane behaviors, in the limit of negligible Reynolds and Peclet numbers inside the membrane. The closure problem at the microscale, found via homogenization, allows one to link the membrane microstructure to its effective macroscopic properties, such as solvent permeability and solute diffusivity. After a validation of the model through comparison with the corresponding full-scale solution, an immediate application is provided, where the membrane behavior is a priori predicted through an analysis of its microscopic properties. The introduced tools and considerations may find applications in the design of thin microstructured membranes. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:16
相关论文
共 50 条