Non existence of quasi-harmonic spheres

被引:12
|
作者
Li, Jiayu [1 ,2 ]
Zhu, Xiangrong [1 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys, Math Grp, I-34100 Trieste, Italy
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
SELF-SIMILAR SOLUTIONS; HEAT FLOWS; BLOW-UP; MAPS;
D O I
10.1007/s00526-009-0271-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M and N be compact Riemannian manifolds. To prove the global existence and convergence of the heat flow for harmonic maps between M and N, it suffices to show the nonexistence of harmonic spheres and nonexistence of quasi-harmonic spheres. In this paper, we prove that, if the universal covering of N admits a nonnegative strictly convex function with polynomial growth, then there are no quasi-harmonic spheres nor harmonic spheres. This generalizes the famous Eells-Sampson's theorem (Am J Math 86:109-169, [7]).
引用
收藏
页码:441 / 460
页数:20
相关论文
共 50 条
  • [41] A Model for the Source of Quasi-Harmonic Bursts on the Crab Pulsar
    Zheleznyakov, V. V.
    Bespalov, P. A.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2018, 44 (07): : 442 - 456
  • [42] STATISTICAL CHARACTERISTICS OF RANDOM PHASE OF A QUASI-HARMONIC PROCESS
    TIKHONOV, VI
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1968, 13 (05): : 710 - &
  • [43] QUASI-HARMONIC APPROXIMATION AND A GENERALIZED GRUNEISEN EQUATION OF STATE
    MOPSIK, FI
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION A-PHYSICS AND CHEMISTRY, 1973, A 77 (04): : 407 - 409
  • [44] QUASI-HARMONIC ROTATING WAVES IN DISTRIBUTED ACTIVE SYSTEMS
    KRINSKY, VI
    MALOMED, BA
    PHYSICA D, 1983, 9 (1-2): : 81 - 95
  • [45] A quantum quasi-harmonic nonlinear oscillator with an isotonic term
    Ranada, Manuel F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [46] On a Theory of the Origin of Quasi-Harmonic Bursts on the Crab Pulsar
    Zheleznyakov, V. V.
    Shaposhnikov, V. E.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2022, 48 (10): : 601 - 613
  • [47] A Model for the Source of Quasi-Harmonic Bursts on the Crab Pulsar
    V. V. Zheleznyakov
    P. A. Bespalov
    Astronomy Letters, 2018, 44 : 442 - 456
  • [48] Features of the Statistical Distribution of a Quasi-Harmonic Signal Phase
    Yakovleva, T. V.
    DOKLADY MATHEMATICS, 2021, 103 (02) : 95 - 97
  • [49] EFFECT OF TRANSISTOR INERTIA ON THE SPECTRUM OF A QUASI-HARMONIC SIGNAL
    VASYUKOV, VV
    TKACHENKO, DA
    UTKIN, MA
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1987, 41-2 (06) : 46 - 48
  • [50] Conformational entropy of biomolecules: Beyond the quasi-harmonic approximation
    Numata, Jorge
    Wan, Michael
    Knapp, Ernst-Walter
    GENOME INFORMATICS 2007, VOL 18, 2007, 18 : 192 - 205