Titanium coated with poly(lactic-co-glycolic) acid incorporating simvastatin: Biofunctionalization of dental prosthetic abutments

被引:13
|
作者
Littuma, Gustavo J. S. [1 ]
Sordi, Mariane B. [1 ]
Curtarelli, Raissa Borges [1 ]
Aragones, Aguedo [2 ]
da Cruz, Ariadne C. C. [3 ]
Magini, Ricardo S. [3 ]
机构
[1] Univ Fed Santa Catarina, Dent Post Grad, Florianopolis, SC, Brazil
[2] Biocentro, Florianopolis, SC, Brazil
[3] Univ Fed Santa Catarina, Dept Dent, Florianopolis, SC, Brazil
关键词
cytotoxicity; physical-chemical properties; PLGA; simvastatin; BONE-FORMATION; LOCAL APPLICATION; IMPLANTS; OSSEOINTEGRATION; DIFFERENTIATION; DELIVERY; STATINS; DEGRADATION; SURFACES; HEALTH;
D O I
10.1111/jre.12695
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objective To propose a biofunctionalized prosthetic abutment by analyzing physico-chemical and morphological properties, simvastatin (SIM) release, and biocompatibility of titanium (Ti) disks coated with poly(lactic-co-glycolic) acid (PLGA) incorporating SIM. Methods Titanium disks (8 x 3 mm) were distributed into four groups: Ti: pure Ti; Ti + PLGA: Ti coated with PLGA; Ti + PLGA + SIM6%: Ti + PLGA with 6% SIM; and Ti + PLGA + SIM0.6%: Ti + PLGA incorporating 0.6% SIM. PLGA was prepared through chloroform evaporation technique. After complete dissolution of PLGA, SIM was diluted in the solution. Ti + PLGA, Ti + PLGA + SIM6%, and Ti + PLGA + SIM0.6% were dip coated with PLGA and PLGA + SIM, respectively. Samples were sterilized by ethylene oxide. For SIM release assay, disks were submerged in PBS, pH 7.4, 37 degrees C, 30 rpm up to 600 hours. At different time intervals, SIM was quantified by spectrophotometry (238 nm). For characterization of the biomaterial components, it was performed Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy (SEM), optical profilometry, and atomic force microscopy. Biocompatibility analyses were performed by MTS colorimetric assay on murine fibroblasts L929, human gingival fibroblasts (HGFs), and stem cells from human exfoliated deciduous teeth (SHEDs). Absorbance was measured at 490 nm, and percentages of viable cells were calculated in relation to positive control (Ti). SEM images were obtained to verify cell adhesion and morphology. One-way ANOVA followed by Tukey's post hoc test was applied (P < 0.05) for statistical analyses. Results SIM release was slow and continuous, reaching about 21% of the incorporated SIM after 600 hours. Topographical analyses revealed success in coating Ti disks with PLGA incorporating SIM. Regarding biocompatibility test, Ti + PLGA + SIM0.6% showed the highest percentage of L929 viability at days 3 and 7. There was no significant difference for Ti, Ti + PLGA, and Ti + PLGA + SIM0.6% groups on cell viability of both SHEDs and HGFs at days 3 and 7. SEM corroborates that SHEDs and HGFs were able to adhere and proliferate on Ti, Ti + PLGA, and Ti + PLGA + SIM0.6% surfaces. Conclusion A slow and controlled release of SIM was achieved, attributed to a diffusional mass transfer mechanism. Moreover, a homogenous coating topography was obtained. Additionally, 0.6% SIM incorporated into PLGA coating improved fibroblasts L929 viability compared to titanium or PLGA. Also, 0.6% SIM incorporated into PLGA promoted cell viability of about 100% for HGFs and approximately 150% for human mesenchymal stem cells. Therefore, this study allows to consider the use of PLGA-coated titanium incorporating SIM as a biofunctionalized abutment for dental implants.
引用
下载
收藏
页码:116 / 124
页数:9
相关论文
共 50 条
  • [21] Progress in the drug encapsulation of poly(lactic-co-glycolic acid) and folate-decorated poly(ethylene glycol)-poly(lactic-co-glycolic acid) conjugates for selective cancer treatment
    Dodda, Jagan Mohan
    Remis, Tomas
    Rotimi, Sadiku
    Yeh, Yi-Cheun
    JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (22) : 4127 - 4141
  • [22] Biomimetic cell membrane-coated poly(lactic-co-glycolic acid) nanoparticles for biomedical applications
    Jan, Nasrullah
    Madni, Asadullah
    Khan, Safiullah
    Shah, Hassan
    Akram, Faizan
    Khan, Arshad
    Ertas, Derya
    Bostanudin, Mohammad F.
    Contag, Christopher H.
    Ashammakhi, Nureddin
    Ertas, Yavuz Nuri
    BIOENGINEERING & TRANSLATIONAL MEDICINE, 2023, 8 (02)
  • [23] Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid)
    Miao, Xigeng
    Tan, Dawn Meifang
    Li, Jian
    Xiao, Yin
    Crawford, Ross
    ACTA BIOMATERIALIA, 2008, 4 (03) : 638 - 645
  • [24] Apatite-Coated Porous Poly(lactic-co-glycolic acid) Microspheres as an Injectable Bone Substitute
    Lee, Tae-Jin
    Kang, Sun-Woong
    Bhang, Suk Ho
    Kang, Jin Muk
    Kim, Byung-Soo
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2010, 21 (05) : 635 - 645
  • [25] Poly (lactic-co-glycolic acid) as a controlled release delivery device
    Tee Yong Lim
    Chye Khoon Poh
    W. Wang
    Journal of Materials Science: Materials in Medicine, 2009, 20 : 1669 - 1675
  • [26] Poly(Lactic-co-Glycolic) Acid as a Carrier for Imaging Contrast Agents
    Doiron, Amber L.
    Homan, Kimberly A.
    Emelianov, Stanislav
    Brannon-Peppas, Lisa
    PHARMACEUTICAL RESEARCH, 2009, 26 (03) : 674 - 682
  • [27] Interaction of poly(lactic-co-glycolic acid) nanoparticles at fluid interfaces
    Gyulai, Gergo
    Kiss, Eva
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 500 : 9 - 19
  • [28] In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges
    Yoshioka, Taiyo
    Kawazoe, Naoki
    Tateishi, Tetsuya
    Chen, Guoping
    BIOMATERIALS, 2008, 29 (24-25) : 3438 - 3443
  • [29] Multifaceted chitin/poly(lactic-co-glycolic) acid composite nanogels
    Rejinold, N. Sanoj
    Biswas, Raja
    Chellan, Gopi
    Jayakumar, R.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2014, 67 : 279 - 288
  • [30] Controlled release of amoxicillin from hydroxyapatite-coated poly(lactic-co-glycolic acid) microspheres
    Xu, Qingguo
    Czemuszka, Jan T.
    JOURNAL OF CONTROLLED RELEASE, 2008, 127 (02) : 146 - 153