Numerical Simulation of Wave Propagation over Structures on a Porous Seabed

被引:4
|
作者
Min, Eun-Hong [1 ]
Koo, Weoncheol [1 ]
机构
[1] Inha Univ, Dept Naval Architecture & Ocean Engn, Incheon, South Korea
关键词
Numerical wave tank; porous domain; Darcy's law; Bragg reflection; Wave propagation;
D O I
10.2112/SI85-194.1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A wave-body interaction with semi-circular rigid structures placed on a porous seabed was simulated. Owing to the rigid structures installed at regular intervals, spatial modulation of the wave propagation due to a Bragg reflection was examined. The computational domain consisted of a potential-flow water domain and porous domain with Darcy's law interface boundary condition. Using the numerical wave tank technique, the two-domain boundary element method was developed to simulate wave propagation over seafloor structures on the porous boundary in the time domain. For various permeability constants and incident wave frequencies, wave amplitude was varied in the direction of wave propagation over the porous boundary and the effects of the permeability on wave attenuation were investigated.
引用
收藏
页码:966 / 970
页数:5
相关论文
共 50 条
  • [41] Numerical simulation of Lamb wave propagation in metallic foam sandwich structures: a parametric study
    Hosseini, Seyed Mohammad Hossein
    Kharaghani, Abdolreza
    Kirsch, Christoph
    Gabbert, Ulrich
    COMPOSITE STRUCTURES, 2013, 97 : 387 - 400
  • [42] Numerical simulation of the wave-driven solute transport in deformable seabed
    Liu X.
    Liu M.
    Shuikexue Jinzhan/Advances in Water Science, 2021, 32 (01): : 88 - 96
  • [43] Fully nonlinear numerical simulation for wave-current propagation over a submerged bar
    Chen, Lifen
    Ning, Dezhi
    Teng, Bin
    Song, Weihua
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2011, 43 (05): : 834 - 843
  • [44] Numerical simulation of nonlinear wave propagation and breaking over constant-slope bottom
    Dimakopoulos, Aggelos S.
    Dimas, Athanassios A.
    Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, Vol 4, 2006, : 597 - 606
  • [45] Numerical simulation of water wave propagation and transformation
    Zhao X.
    Journal of Marine Science and Application, 2010, 9 (4) : 363 - 371
  • [46] Numerical simulation of wave propagation in cancellous bone
    Padilla, F.
    Bossy, E.
    Haiat, G.
    Jenson, F.
    Laugier, P.
    ULTRASONICS, 2006, 44 (e239-e243) : E239 - E243
  • [47] Numerical simulation of wave propagation in anisotropic media
    Petrov, I. B.
    Favorskaya, A. V.
    Vasyukov, A. V.
    Ermakov, A. S.
    Beklemysheva, K. A.
    Kazakov, A. O.
    Novikov, A. V.
    DOKLADY MATHEMATICS, 2014, 90 (03) : 778 - 780
  • [48] Numerical simulation of wave propagation in anisotropic media
    I. B. Petrov
    A. V. Favorskaya
    A. V. Vasyukov
    A. S. Ermakov
    K. A. Beklemysheva
    A. O. Kazakov
    A. V. Novikov
    Doklady Mathematics, 2014, 90 : 778 - 780
  • [49] Numerical simulation of shock wave propagation in flows
    Renier, Mathieu
    Marchiano, Regis
    Gaudard, Eric
    Gallin, Louis-Jonardan
    Coulouvrat, Francois
    NONLINEAR ACOUSTICS: STATE-OF-THE-ART AND PERSPECTIVES (ISNA 19), 2012, 1474 : 332 - 335
  • [50] Numerical simulation of wave propagation in magnetic network
    Vigeesh, G.
    Hasan, S. S.
    Steiner, O.
    UNIVERSAL HELIOPHYSICAL PROCESSES, 2009, (257): : 185 - +