Behavioral decision-making for urban autonomous driving in the presence of pedestrians using Deep Recurrent Q-Network

被引:0
|
作者
Deshpande, Niranjan [1 ]
Vaufreydaz, Dominique [2 ]
Spalanzani, Anne [1 ]
机构
[1] Univ Grenoble Alpes, INRIA, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CNRS, INRIA, Grenoble INP,LIG, F-38000 Grenoble, France
关键词
D O I
10.1109/icarcv50220.2020.9305435
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decision making for autonomous driving in urban environments is challenging due to the complexity of the road structure and the uncertainty in the behavior of diverse road users. Traditional methods consist of manually designed rules as the driving policy, which require expert domain knowledge, are difficult to generalize and might give sub-optimal results as the environment gets complex. Whereas, using reinforcement learning, optimal driving policy could be learned and improved automatically through several interactions with the environment. However, current research in the field of reinforcement learning for autonomous driving is mainly focused on highway setup with little to no emphasis on urban environments. In this work, a deep reinforcement learning based decision-making approach for high-level driving behavior is proposed for urban environments in the presence of pedestrians. For this, the use of Deep Recurrent Q-Network (DRQN) is explored, a method combining state-of-the art Deep Q-Network (DQN) with a long term short term memory (LSTM) layer helping the agent gain a memory of the environment. A 3-D state representation is designed as the input combined with a well defined reward function to train the agent for learning an appropriate behavior policy in a real-world like urban simulator. The proposed method is evaluated for dense urban scenarios and compared with a rule-based approach and results show that the proposed DRQN based driving behavior decision maker outperforms the rule-based approach.
引用
收藏
页码:428 / 433
页数:6
相关论文
共 50 条
  • [11] End-to-End Autonomous Driving Through Dueling Double Deep Q-Network
    Baiyu Peng
    Qi Sun
    Shengbo Eben Li
    Dongsuk Kum
    Yuming Yin
    Junqing Wei
    Tianyu Gu
    Automotive Innovation, 2021, 4 : 328 - 337
  • [12] Continuous decision-making for autonomous driving at intersections using deep deterministic policy gradient
    Li, Guofa
    Li, Shenglong
    Li, Shen
    Qu, Xingda
    IET INTELLIGENT TRANSPORT SYSTEMS, 2022, 16 (12) : 1669 - 1681
  • [13] Decision-making with Triple Density Awareness for Autonomous Driving using Deep Reinforcement Learning
    Zhang, Shuwei
    Wu, Yutian
    Ogai, Harutoshi
    Tateno, Shigeyuki
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [14] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Guofa Li
    Shenglong Li
    Shen Li
    Yechen Qin
    Dongpu Cao
    Xingda Qu
    Bo Cheng
    Automotive Innovation, 2020, 3 : 374 - 385
  • [15] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Li, Guofa
    Li, Shenglong
    Li, Shen
    Qin, Yechen
    Cao, Dongpu
    Qu, Xingda
    Cheng, Bo
    AUTOMOTIVE INNOVATION, 2020, 3 (04) : 374 - 385
  • [16] An improved Dueling Deep Q-network with optimizing reward functions for driving decision method
    Cao, Jiaqi
    Wang, Xiaolan
    Wang, Yansong
    Tian, Yongxiang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2023, 237 (09) : 2295 - 2309
  • [17] Autonomous Vehicles' Decision-Making Behavior in Complex Driving Environments Using Deep Reinforcement Learning
    Qi, Xiao
    Ye, Yingjun
    Sun, Jian
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 5853 - 5864
  • [18] Deep Q-network learning-based active speed management under autonomous driving environments
    Kang, Kawon
    Park, Nuri
    Park, Juneyoung
    Abdel-Aty, Mohamed
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2024,
  • [19] Dynamic Control of Storage Bandwidth Using Double Deep Recurrent Q-Network
    Dheenadayalan, Kumar
    Srinivasaraghavan, Gopalakrishnan
    Muralidhara, V. N.
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VII, 2018, 11307 : 222 - 234
  • [20] Autonomous Driving Behavior Decision-making with RoboSim Model Based on Bayesian Network
    Chen J.-N.
    Zhang M.-Z.
    Du D.-H.
    Li B.
    Nie J.-H.
    Ren J.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (08): : 3836 - 3852