Estimates for the volume of a Lorentzian manifold

被引:2
|
作者
Gerhardt, C [1 ]
机构
[1] Univ Heidelberg, Inst Angew Math, D-69120 Heidelberg, Germany
关键词
Lorentzian manifold; volume estimates; cosmological spacetime; general relativity; constant mean curvature; CMC hypersurface;
D O I
10.1023/A:1022336925552
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove new estimates for the volume of a Lorentzian manifold and show especially that cosmological spacetimes with crushing singularities have finite volume.
引用
收藏
页码:201 / 207
页数:7
相关论文
共 50 条
  • [31] Hypersurfaces with Light-Like Points in a Lorentzian Manifold
    M. Umehara
    K. Yamada
    The Journal of Geometric Analysis, 2019, 29 : 3405 - 3437
  • [32] Some Results On 3-Dimensional Lorentzian Manifold
    Azimpour, S.
    Haji-Badali, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (11)
  • [33] Hypersurfaces with Light-Like Points in a Lorentzian Manifold
    Umehara, M.
    Yamada, K.
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (04) : 3405 - 3437
  • [34] SCREEN ISOTROPIC LEAVES ON LIGHTLIKE HYPERSURFACES OF A LORENTZIAN MANIFOLD
    Gulbahar, Mehmet
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (02) : 429 - 442
  • [35] LORENTZIAN MANIFOLD STRUCTURED BY A PRINCIPAL CONFORMAL SPATIAL CONNECTION
    ARCA, G
    SALEM, MB
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (02): : 123 - 126
  • [36] DIMENSIONALITY REDUCTION BASED ON LORENTZIAN MANIFOLD FOR FACE RECOGNITION
    Bilge, Hasan Sakir
    Kerimbekov, Yerzhan
    Ugurlu, Hasan Huseyin
    2013 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTER AND COMPUTATION (ICECCO), 2013, : 212 - 215
  • [37] Asymptotics of spinfoam amplitude on simplicial manifold: Lorentzian theory
    Han, Muxin
    Zhang, Mingyi
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (16)
  • [38] STABILITY OF MAXIMAL SPACE-LIKE HYPERSURFACES OF A LORENTZIAN MANIFOLD
    BANCEL, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (03): : 153 - 155
  • [39] Curvature estimates in asymptotically flat Lorentzian manifolds
    Finster, F
    Kraus, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (04): : 708 - 723
  • [40] Volume Comparison Theorems for Lorentzian Manifolds
    Paul E. Ehrlich
    Yoon-Tae Jung
    Seon-Bu Kim
    Geometriae Dedicata, 1998, 73 : 39 - 56