THE COMPARED COSTS OF DOMINATION LOCATION-DOMINATION AND IDENTIFICATION

被引:0
|
作者
Hudry, Olivier [1 ]
Lobstein, Antoine [2 ]
机构
[1] Univ Paris Saclay, LTCI, Telecom Paris Tech, 46 Rue Barrault, F-75634 Paris 13, France
[2] Univ Paris Saclay, Univ Paris Sud, Lab Rech Informat, UMR 8623,CNRS, Batiment 650 Ada Lovelace, F-91405 Orsay, France
关键词
graph theory; dominating set; locating-dominating code; identifying code; twin-free graph; POSSIBLE CARDINALITIES; CODES; GRAPHS;
D O I
10.7151/dmgt.2129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a finite graph and r =>= 1 be an integer. For v is an element of V, let B-r(v) = {x is an element of V : d(v, x) <= r} be the ball of radius r centered at v. A set C subset of V is an r-dominating code if for all v is an element of V, we have B-r(v) boolean AND C not equal empty set; it is an r-locating-dominating code if for all v is an element of V, we have B-r(v) boolean AND C not equal empty set, and for any two distinct non-codewords x is an element of V \ C, y is an element of V \ C, we have B-r(x) boolean AND C not equal B-r(y) boolean AND C; it is an r -identifying code if for all v is an element of V, we have B-r(v) n C not equal O, and for any two distinct vertices x is an element of V, y is an element of V, we have B-r(x) n C not equal B-r(y) boolean AND C. We denote by gamma(r)(G) (respectively, ld(r)(G) and idr(G)) the smallest possible cardinality of an r-dominating code (respectively, an r-locating-dominating code and an r-identifying code). We study how small and how large the three differences id(r)(G)-ld(r)(G), id(r)(G)-gamma(r)(G) and ld(r)(G) - gamma(r)(G) can be.
引用
下载
收藏
页码:127 / 147
页数:21
相关论文
共 50 条
  • [31] Forgotten domination, hyper domination and modified forgotten domination indices of graphs
    Ahmed, Hanan
    Salestina, M. Ruby
    Alwardi, Anwar
    Soner, N. D.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2021, 24 (02): : 353 - 368
  • [32] A characterization relating domination, semitotal domination and total Roman domination in trees
    Cabrera Martinez, Abel
    Martinez Arias, Alondra
    Menendez Castillo, Maikel
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (02) : 197 - 209
  • [33] Domination and total domination in complementary prisms
    Haynes, Teresa W.
    Henning, Michael A.
    van der Merwe, Lucas C.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 18 (01) : 23 - 37
  • [34] Double domination and super domination in trees
    Krishnakumari, B.
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (04)
  • [35] A note on domination and total domination in prisms
    Goddard, Wayne
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) : 14 - 20
  • [36] HEREDITARY EQUALITY OF DOMINATION AND EXPONENTIAL DOMINATION
    Henning, Michael A.
    Rautenbach, Dieter
    Jaeger, Simon
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (01) : 275 - 285
  • [37] Perfectly relating the domination, total domination, and paired domination numbers of a graph
    Alvarado, Jose D.
    Dantas, Simone
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1424 - 1431
  • [38] DOMINATION, ETERNAL DOMINATION AND CLIQUE COVERING
    Klostermeyer, William F.
    Mynhardt, C. M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (02) : 283 - 300
  • [39] Generalized domination and efficient domination in graphs
    Bange, DW
    Barkauskas, AE
    Host, LH
    Slater, PJ
    DISCRETE MATHEMATICS, 1996, 159 (1-3) : 1 - 11
  • [40] TOTAL DOMINATION VERSUS PAIRED DOMINATION
    Schaudt, Oliver
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 435 - 447