THE COMPARED COSTS OF DOMINATION LOCATION-DOMINATION AND IDENTIFICATION

被引:0
|
作者
Hudry, Olivier [1 ]
Lobstein, Antoine [2 ]
机构
[1] Univ Paris Saclay, LTCI, Telecom Paris Tech, 46 Rue Barrault, F-75634 Paris 13, France
[2] Univ Paris Saclay, Univ Paris Sud, Lab Rech Informat, UMR 8623,CNRS, Batiment 650 Ada Lovelace, F-91405 Orsay, France
关键词
graph theory; dominating set; locating-dominating code; identifying code; twin-free graph; POSSIBLE CARDINALITIES; CODES; GRAPHS;
D O I
10.7151/dmgt.2129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a finite graph and r =>= 1 be an integer. For v is an element of V, let B-r(v) = {x is an element of V : d(v, x) <= r} be the ball of radius r centered at v. A set C subset of V is an r-dominating code if for all v is an element of V, we have B-r(v) boolean AND C not equal empty set; it is an r-locating-dominating code if for all v is an element of V, we have B-r(v) boolean AND C not equal empty set, and for any two distinct non-codewords x is an element of V \ C, y is an element of V \ C, we have B-r(x) boolean AND C not equal B-r(y) boolean AND C; it is an r -identifying code if for all v is an element of V, we have B-r(v) n C not equal O, and for any two distinct vertices x is an element of V, y is an element of V, we have B-r(x) n C not equal B-r(y) boolean AND C. We denote by gamma(r)(G) (respectively, ld(r)(G) and idr(G)) the smallest possible cardinality of an r-dominating code (respectively, an r-locating-dominating code and an r-identifying code). We study how small and how large the three differences id(r)(G)-ld(r)(G), id(r)(G)-gamma(r)(G) and ld(r)(G) - gamma(r)(G) can be.
引用
收藏
页码:127 / 147
页数:21
相关论文
共 50 条
  • [1] On global location-domination in graphs
    Hernando, Carmen
    Mora, Merce
    Pelayo, Ignacio M.
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2015, 8 (02) : 365 - 379
  • [2] Location-domination in line graphs
    Foucaud, Florent
    Henning, Michael A.
    [J]. DISCRETE MATHEMATICS, 2017, 340 (01) : 3140 - 3153
  • [3] Global Stable Location-Domination in Graphs
    Ortega, Marivir M.
    Malacas, Gina A.
    Canoy, Sergio R., Jr.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (03): : 1685 - 1694
  • [4] Location-domination and matching in cubic graphs
    Foucaud, Florent
    Henning, Michael A.
    [J]. DISCRETE MATHEMATICS, 2016, 339 (04) : 1221 - 1231
  • [5] On regular and new types of codes for location-domination
    Junnila, Ville
    Laihonen, Tero
    Lehtila, Tuomo
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 247 : 225 - 241
  • [6] Global Location-Domination in the Join and Cartesian Product of Graphs
    Malnegro, Analen
    Malacas, Gina
    [J]. DISCRETE AND COMPUTATIONAL GEOMETRY, GRAPHS, AND GAMES, JCDCGGG 2018, 2021, 13034 : 36 - 42
  • [7] Characterizing extremal graphs for open neighbourhood location-domination
    Foucaud, Florent
    Ghareghani, Narges
    Roshany-Tabrizi, Aida
    Sharifani, Pouyeh
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 302 : 76 - 79
  • [8] Location-Domination Type Problems Under the Mycielski Construction
    Bianchi, Silvia M.
    Chakraborty, Dipayan
    Lucarini, Yanina
    Wagler, Annegret K.
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2024, 2024, 14508 : 255 - 269
  • [9] Algorithmic aspects of open neighborhood location-domination in graphs
    Panda, B. S.
    Pandey, Arti
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 216 : 290 - 306
  • [10] GLOBAL LOCATION-DOMINATION IN THE LEXICOGRAPHIC PRODUCT AND CORONA OF GRAPHS
    Malnegro, Analen A.
    Malacas, Gina A.
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 20 (01): : 61 - 71